Added Lecture 4
70
.obsidian/workspace.json
vendored
@ -83,12 +83,12 @@
|
||||
"state": {
|
||||
"type": "markdown",
|
||||
"state": {
|
||||
"file": "Lectures/17 21.02.2025.md",
|
||||
"file": "Lectures/05 15.11.2024.md",
|
||||
"mode": "source",
|
||||
"source": false
|
||||
},
|
||||
"icon": "lucide-file",
|
||||
"title": "17 21.02.2025"
|
||||
"title": "05 15.11.2024"
|
||||
}
|
||||
}
|
||||
],
|
||||
@ -257,51 +257,51 @@
|
||||
},
|
||||
"active": "91b08793b1132c55",
|
||||
"lastOpenFiles": [
|
||||
"Material/test.txt",
|
||||
"Material/data.txt",
|
||||
"Material/V3.ipynb",
|
||||
"Lectures/03 01.11.2024.md",
|
||||
"Material/3.Vorlesung.slides.html",
|
||||
"Material/3.Vorlesung.ipynb",
|
||||
"Material/Untitled.ipynb",
|
||||
"Lectures/02 25.10.2024.md",
|
||||
"To Do.md",
|
||||
"README.md",
|
||||
"Gruppen/MeWi 7 (DiKum).md",
|
||||
"Gruppen/MeWi 6.md",
|
||||
"Gruppen/MeWi 5.md",
|
||||
"Material/env/lib/python3.12/site-packages/__pycache__/pylab.cpython-312.pyc",
|
||||
"Material/env/lib/python3.12/site-packages/matplotlib-3.9.2.dist-info/WHEEL",
|
||||
"Material/env/lib/python3.12/site-packages/matplotlib-3.9.2.dist-info/REQUESTED",
|
||||
"Material/env/lib/python3.12/site-packages/matplotlib-3.9.2.dist-info/RECORD",
|
||||
"Material/env/lib/python3.12/site-packages/matplotlib-3.9.2.dist-info/METADATA",
|
||||
"Material/env/lib/python3.12/site-packages/matplotlib-3.9.2.dist-info/LICENSE",
|
||||
"Material/env/lib/python3.12/site-packages/matplotlib-3.9.2.dist-info/INSTALLER",
|
||||
"Material/env/lib/python3.12/site-packages/matplotlib-3.9.2.dist-info",
|
||||
"Material/env/lib/python3.12/site-packages/mpl_toolkits/mplot3d/tests/__pycache__/test_legend3d.cpython-312.pyc",
|
||||
"Material/env/lib/python3.12/site-packages/mpl_toolkits/mplot3d/tests/__pycache__/test_axes3d.cpython-312.pyc",
|
||||
"Material/env/lib/python3.12/site-packages/mpl_toolkits/mplot3d/tests/__pycache__/test_art3d.cpython-312.pyc",
|
||||
"Material/env/lib/python3.12/site-packages/matplotlib/mpl-data/sample_data/logo2.png",
|
||||
"Material/env/lib/python3.12/site-packages/matplotlib/mpl-data/sample_data/grace_hopper.jpg",
|
||||
"Material/env/lib/python3.12/site-packages/matplotlib/mpl-data/sample_data/Minduka_Present_Blue_Pack.png",
|
||||
"Material/env/lib/python3.12/site-packages/matplotlib/mpl-data/images/zoom_to_rect_large.png",
|
||||
"Material/env/lib/python3.12/site-packages/matplotlib/mpl-data/images/zoom_to_rect.svg",
|
||||
"Material/env/lib/python3.12/site-packages/matplotlib/mpl-data/images/zoom_to_rect.png",
|
||||
"Material/env/lib/python3.12/site-packages/matplotlib/mpl-data/images/zoom_to_rect-symbolic.svg",
|
||||
"Material/env/lib/python3.12/site-packages/matplotlib/mpl-data/images/subplots_large.png",
|
||||
"Material/env/lib/python3.12/site-packages/matplotlib/mpl-data/images/subplots.svg",
|
||||
"Material/env/lib/python3.12/site-packages/matplotlib/mpl-data/images/subplots.png",
|
||||
"Lectures/04 08.11.2024.md",
|
||||
"Gruppen/Engineering 1.md",
|
||||
"Gruppen/MeWi 4.md",
|
||||
"Gruppen/MeWi 5.md",
|
||||
"Gruppen/MeWi 3.md",
|
||||
"Gruppen/MeWi 2.md",
|
||||
"Gruppen/MeWi 1.md",
|
||||
"Gruppen/Engineering 1.md",
|
||||
"Gruppen/MeWi 7 (DiKum).md",
|
||||
"Gruppen/MeWi 6.md",
|
||||
"To Do.md",
|
||||
"Timetable.md",
|
||||
"Lectures/17 21.02.2025.md",
|
||||
"Lectures/03 01.11.2024.md",
|
||||
"Lectures/02 25.10.2024.md",
|
||||
"README.md",
|
||||
"Umfrage.md",
|
||||
"Template/Gruppe.md",
|
||||
"Template/Lecture.md",
|
||||
"Gruppen",
|
||||
"Material/README.md",
|
||||
"Material/ToDo.md",
|
||||
"Material/wise_24_25/lernmaterial/meme.png",
|
||||
"Material/wise_24_25/lernmaterial/meme.webp",
|
||||
"Student List.md",
|
||||
"Timetable.md",
|
||||
"Lectures/17 21.02.2025.md",
|
||||
"Lectures/16 14.02.2025.md",
|
||||
"Material/2.vorlesung.ipynb",
|
||||
"Material/env/etc/jupyter/labconfig/page_config.json",
|
||||
"Material/env/etc/jupyter/labconfig",
|
||||
"Material/env/lib/python3.12/site-packages/jupyter-1.1.1.dist-info/top_level.txt",
|
||||
"Material/env/lib/python3.12/site-packages/nbgrader/server_extensions/formgrader/static/components/bootstrap/fonts/glyphicons-halflings-regular.svg",
|
||||
"Material/env/lib/python3.12/site-packages/nbgrader/docs/source/user_guide/submitted/hacker/ps1/jupyter.png",
|
||||
"Material/env/lib/python3.12/site-packages/nbgrader/docs/source/user_guide/submitted/bitdiddle/ps1/jupyter.png",
|
||||
"Material/env/lib/python3.12/site-packages/nbgrader/docs/source/user_guide/feedback/hacker/ps1/jupyter.png",
|
||||
"Material/env/lib/python3.12/site-packages/nbgrader/docs/source/user_guide/feedback/bitdiddle/ps1/jupyter.png",
|
||||
"Material/env/lib/python3.12/site-packages/nbgrader/docs/source/user_guide/downloaded/ps1/archive/jupyter.png",
|
||||
"Material/env/lib/python3.12/site-packages/nbgrader/docs/source/user_guide/autograded/hacker/ps1/jupyter.png",
|
||||
"Material/env/lib/python3.12/site-packages/nbgrader/docs/source/user_guide/autograded/bitdiddle/ps1/jupyter.png",
|
||||
"Material/env/lib/python3.12/site-packages/nbgrader/server_extensions/formgrader/static/components/underscore/README.md",
|
||||
"Material/env/lib/python3.12/site-packages/nbgrader/server_extensions/formgrader/static/components/jquery-color/README.md",
|
||||
"Material/env/lib/python3.12/site-packages/nbgrader/server_extensions/formgrader/static/components/jquery/README.md",
|
||||
"Material/env/lib/python3.12/site-packages/nbgrader/server_extensions/formgrader/static/components/datatables.net-bs/Readme.md"
|
||||
"Material/env/lib/python3.12/site-packages/nbgrader/server_extensions/formgrader/static/components/jquery/README.md"
|
||||
]
|
||||
}
|
@ -7,13 +7,13 @@ tags:
|
||||
---
|
||||
# Mitglieder
|
||||
|
||||
| Name | Punkte | Durchschnitt | Jupyter Kennung | Mail |
|
||||
| -------------- | ------ | ------------ | -------------------------------------------------------------------------- | ------------------------------------------------------------------------- |
|
||||
| Janna Heiny | | | | [j.heiny@tu-braunschweig.de](mailto:j.heiny@tu-braunschweig.de) |
|
||||
| Milena Krieger | | | | [m.krieger@tu-braunschweig.de](mailto:m.krieger@tu-braunschweig.de) |
|
||||
| Xiaowei Wang | | | <span style="color:rgb(255, 0, 0)">39dc5bd7686c3280247aacee82c9818e</span> | [xiaowei.wang@tu-braunschweig.de](mailto:xiaowei.wang@tu-braunschweig.de) |
|
||||
| | | | | |
|
||||
| | | | | |
|
||||
| Name | Punkte | Durchschnitt | Jupyter Kennung | Mail |
|
||||
| -------------- | ------ | ------------ | -------------------------------- | ------------------------------------------------------------------------- |
|
||||
| Janna Heiny | | | 3140c4b62381a2203803f8b237118244 | [j.heiny@tu-braunschweig.de](mailto:j.heiny@tu-braunschweig.de) |
|
||||
| Milena Krieger | | | 8be9a4cc0b240a18171892b873dc2cb8 | [m.krieger@tu-braunschweig.de](mailto:m.krieger@tu-braunschweig.de) |
|
||||
| Xiaowei Wang | | | 39dc5bd7686c3280247aacee82c9818e | [xiaowei.wang@tu-braunschweig.de](mailto:xiaowei.wang@tu-braunschweig.de) |
|
||||
| | | | | |
|
||||
| | | | | |
|
||||
|
||||
# Notizen
|
||||
|
||||
|
@ -12,7 +12,7 @@ tags:
|
||||
| Izabel Mike | 29.5 | | 8c710a24debf6159659d1e58dd975ce2 | [i.mike@tu-braunschweig.de](mailto:i.mike@tu-braunschweig.de) |
|
||||
| Lara Troschke | 20.5 | | 7b441c67713f2a49811625905612f19b | [l.troschke@tu-braunschweig.de](mailto:l.troschke@tu-braunschweig.de) |
|
||||
| Inga-Brit Turschner | 25.5 | | 72f0b5fd2cdf4dd808ca9a3add584c75 | [i.turschner@tu-braunschweig.de](mailto:i.turschner@tu-braunschweig.de) |
|
||||
| | | | | |
|
||||
| Yannik Haupt | | | f4f597c57d8a31960750e0647f917ed3 | |
|
||||
| | | | | |
|
||||
|
||||
# Notizen
|
||||
|
@ -7,13 +7,13 @@ tags:
|
||||
---
|
||||
# Mitglieder
|
||||
|
||||
| Name | Punkte | Durchschnitt | Jupyter Kennung | Mail |
|
||||
| ------------------ | ------ | ------------ | --------------------------------------------------------------------- | ----------------------------------------------------------------- |
|
||||
| Nova Eib | 31 | | b313c08a73772a8237e0593ec5c3ee27 | [n.eib@tu-braunschweig.de](mailto:n.eib@tu-braunschweig.de) |
|
||||
| Julia Renner | | | | [j.renner@tu-braunschweig.de](mailto:j.renner@tu-braunschweig.de) |
|
||||
| Isabel Rudolf | | | <span style="color:rgb(255, 0, 0)">4306ac2b1bf2fe7189d53aad469</span> | [i.rudolf@tu-braunschweig.de](mailto:i.rudolf@tu-braunschweig.de) |
|
||||
| Katharina Walz | 31 | | 6349002488dfe4343537174fb9381f95 | [k.walz@tu-braunschweig.de](mailto:k.walz@tu-braunschweig.de) |
|
||||
| Unsichtbare Person | | | | |
|
||||
| Name | Punkte | Durchschnitt | Jupyter Kennung | Mail |
|
||||
| -------------- | ------ | ------------ | -------------------------------- | ----------------------------------------------------------------- |
|
||||
| Nova Eib | 31 | | b313c08a73772a8237e0593ec5c3ee27 | [n.eib@tu-braunschweig.de](mailto:n.eib@tu-braunschweig.de) |
|
||||
| Julia Renner | | | 9efda636813423536dfd581ebeae4edc | [j.renner@tu-braunschweig.de](mailto:j.renner@tu-braunschweig.de) |
|
||||
| Isabel Rudolf | | | 4306ac2b1bf2fe7189d53aad46999f31 | [i.rudolf@tu-braunschweig.de](mailto:i.rudolf@tu-braunschweig.de) |
|
||||
| Katharina Walz | 31 | | 6349002488dfe4343537174fb9381f95 | [k.walz@tu-braunschweig.de](mailto:k.walz@tu-braunschweig.de) |
|
||||
| Cam Thu Do | | | dcccfe28b7e78cc77c118532574b1075 | |
|
||||
|
||||
# Notizen
|
||||
|
||||
|
@ -7,13 +7,13 @@ tags:
|
||||
---
|
||||
# Mitglieder
|
||||
|
||||
| Name | Punkte | Durchschnitt | Jupyter Kennung | Mail |
|
||||
| -------------- | ------ | ------------ | -------------------------------------------------------------------------- | --------------------------------------------------------------------- |
|
||||
| Vikoria Litza | | | | [v.litza@tu-braunschweig.de](mailto:v.litza@tu-braunschweig.de) |
|
||||
| Lea Noglik | | | <span style="color:rgb(255, 0, 0)">f24ccc1cefe390cd1036419b89f31d4f</span> | [l.noglik@tu-braunschweig.de](mailto:l.noglik@tu-braunschweig.de) |
|
||||
| Donika Nuhiu | | | | [d.nuhiu@tu-braunschweig.de](mailto:d.nuhiu@tu-braunschweig.de) |
|
||||
| Alea Unger | 30 | | f8c2ba8abf5b7d89a240902634a5c53a | [a.unger@tu-braunschweig.de](mailto:a.unger@tu-braunschweig.de) |
|
||||
| Marie Wallbaum | | | <span style="color:rgb(255, 0, 0)">eec48a6d211105d6f87267fbd428ab69</span> | [m.wallbaum@tu-braunschweig.de](mailto:m.wallbaum@tu-braunschweig.de) |
|
||||
| Name | Punkte | Durchschnitt | Jupyter Kennung | Mail |
|
||||
| -------------- | ------ | ------------ | -------------------------------- | --------------------------------------------------------------------- |
|
||||
| Vikoria Litza | | | 055a44301e7b7281e0ee98815f99c4dd | [v.litza@tu-braunschweig.de](mailto:v.litza@tu-braunschweig.de) |
|
||||
| Lea Noglik | | | f24ccc1cefe390cd1036419b89f31d4f | [l.noglik@tu-braunschweig.de](mailto:l.noglik@tu-braunschweig.de) |
|
||||
| Donika Nuhiu | | | bb62dfd14ba80f21678bee50e4f69131 | [d.nuhiu@tu-braunschweig.de](mailto:d.nuhiu@tu-braunschweig.de) |
|
||||
| Alea Unger | 30 | | f8c2ba8abf5b7d89a240902634a5c53a | [a.unger@tu-braunschweig.de](mailto:a.unger@tu-braunschweig.de) |
|
||||
| Marie Wallbaum | | | eec48a6d211105d6f87267fbd428ab69 | [m.wallbaum@tu-braunschweig.de](mailto:m.wallbaum@tu-braunschweig.de) |
|
||||
|
||||
# Notizen
|
||||
|
||||
|
@ -7,13 +7,13 @@ tags:
|
||||
---
|
||||
# Mitglieder
|
||||
|
||||
| Name | Punkte | Durchschnitt | Jupyter Kennung | Mail |
|
||||
| --------------- | ------ | ------------ | -------------------------------------------------------------------------- | ----------------------------------------------------------------------- |
|
||||
| Nele Grundke | | | <span style="color:rgb(255, 0, 0)">f61621cbe911f21ddd781c21e4528b07</span> | [n.grundke@tu-braunschweig.de](mailto:n.grundke@tu-braunschweig.de) |
|
||||
| Julia Limbach | | | | [j.limbach@tu-braunschweig.de](mailto:j.limbach@tu-braunschweig.de) |
|
||||
| Melina Sablotny | | | <span style="color:rgb(255, 0, 0)">4111400b4ae2c863a1c4b73a21f87093</span> | [m.sablotny@tu-braunschweig.de](mailto:m.sablotny@tu-braunschweig.de) |
|
||||
| Lucy Thiele | | | <span style="color:rgb(255, 0, 0)">4c0ddab5bed6ff025cee04f8d73301a3</span> | [lucy.thiele@tu-braunschweig.de](mailto:lucy.thiele@tu-braunschweig.de) |
|
||||
| | | | | |
|
||||
| Name | Punkte | Durchschnitt | Jupyter Kennung | Mail |
|
||||
| --------------- | ------ | ------------ | -------------------------------- | ----------------------------------------------------------------------- |
|
||||
| Nele Grundke | | | f61621cbe911f21ddd781c21e4528b07 | [n.grundke@tu-braunschweig.de](mailto:n.grundke@tu-braunschweig.de) |
|
||||
| Julia Limbach | | | | [j.limbach@tu-braunschweig.de](mailto:j.limbach@tu-braunschweig.de) |
|
||||
| Melina Sablotny | | | 4111400b4ae2c863a1c4b73a21f87093 | [m.sablotny@tu-braunschweig.de](mailto:m.sablotny@tu-braunschweig.de) |
|
||||
| Lucy Thiele | | | 4c0ddab5bed6ff025cee04f8d73301a3 | [lucy.thiele@tu-braunschweig.de](mailto:lucy.thiele@tu-braunschweig.de) |
|
||||
| | | | | |
|
||||
|
||||
# Notizen
|
||||
|
||||
|
@ -7,13 +7,13 @@ tags:
|
||||
---
|
||||
# Mitglieder
|
||||
|
||||
| Name | Punkte | Durchschnitt | Jupyter Kennung | Mail |
|
||||
| ------------------- | ------ | ------------ | -------------------------------------------------------------------------- | --------------------------------------------------------------------------------- |
|
||||
| Abdalaziz Abunjaila | 30.5 | | 79b388885f89954decaefc9e19aa8871 | [a.abunjaila@tu-braunschweig.de](mailto:a.abunjaila@tu-braunschweig.de) |
|
||||
| Marleen Adolphi | | | | [m.adolphi@tu-braunschweig.de](mailto:m.adolphi@tu-braunschweig.de) |
|
||||
| Alea Schleier | | | | [a.schleier@tu-braunschweig.de](mailto:a.schleier@tu-braunschweig.de) |
|
||||
| Marie Seeger | | | <span style="color:rgb(255, 0, 0)">f7017b11a2904a74302c9f4f217779fb</span> | [marie.seeger@tu-braunschweig.de](mailto:marie.seeger@tu-braunschweig.de) |
|
||||
| Lilly-Lu Warnken | | | | [lilly-lu.warnken@tu-braunschweig.de](mailto:lilly-lu.warnken@tu-braunschweig.de) |
|
||||
| Name | Punkte | Durchschnitt | Jupyter Kennung | Mail |
|
||||
| ------------------- | ------ | ------------ | -------------------------------- | --------------------------------------------------------------------------------- |
|
||||
| Abdalaziz Abunjaila | 30.5 | | 79b388885f89954decaefc9e19aa8871 | [a.abunjaila@tu-braunschweig.de](mailto:a.abunjaila@tu-braunschweig.de) |
|
||||
| Marleen Adolphi | | | bb549f9016ee05a07ce271c10482879d | [m.adolphi@tu-braunschweig.de](mailto:m.adolphi@tu-braunschweig.de) |
|
||||
| Alea Schleier | | | beb3bcd7515400b58f6fab7567193cbf | [a.schleier@tu-braunschweig.de](mailto:a.schleier@tu-braunschweig.de) |
|
||||
| Marie Seeger | | | f7017b11a2904a74302c9f4f217779fb | [marie.seeger@tu-braunschweig.de](mailto:marie.seeger@tu-braunschweig.de) |
|
||||
| Lilly-Lu Warnken | | | 5fe894b59ff39da82ac4361dcb2d35b8 | [lilly-lu.warnken@tu-braunschweig.de](mailto:lilly-lu.warnken@tu-braunschweig.de) |
|
||||
|
||||
# Notizen
|
||||
|
||||
|
@ -8,6 +8,14 @@
|
||||
"# 3. Vorlesung"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "a21df6bb-f501-474a-9e1a-7dd2a90cd92d",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Einfache Zählschleife"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
@ -25,10 +33,11 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"count = 1\n",
|
||||
"while count < 4:\n",
|
||||
"# Als While Loop\n",
|
||||
"count = 1 # Zählvariable\n",
|
||||
"while count < 4: # Bedingung\n",
|
||||
" print(count)\n",
|
||||
" count += 1 "
|
||||
" count += 1 # Hochzählen"
|
||||
]
|
||||
},
|
||||
{
|
||||
@ -48,6 +57,7 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# Als For Loop\n",
|
||||
"for count in [1, 2, 3]:\n",
|
||||
" print(count)"
|
||||
]
|
||||
@ -57,6 +67,8 @@
|
||||
"id": "daaa7cbe-0cb7-45c9-89a8-241561908db2",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Beispiel einer Zählschleife in C:\n",
|
||||
"\n",
|
||||
"```C\n",
|
||||
"for (int i = 0; i < 4, i++) {}\n",
|
||||
"```"
|
||||
@ -64,7 +76,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"execution_count": 2,
|
||||
"id": "3e461857-f366-46f8-ad51-9800348b4521",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@ -73,18 +85,110 @@
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"1\n",
|
||||
"2\n",
|
||||
"3\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"for count in range(1,4,2):\n",
|
||||
"# Zählschleife mittels range Funktion\n",
|
||||
"for count in range(1,4):\n",
|
||||
" print(count)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "b572967d-7488-4be7-b8b7-8b0237eddc86",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"`range` kann bis zu 3 Parameter nehmen.\n",
|
||||
"\n",
|
||||
"- 1 Parameter `range(4)` -> Zählt in 1er Schritten bis exklusive der eingegebenen Zahl *0,1,2,3*\n",
|
||||
"\n",
|
||||
"Der folgend genutzte Stern `*` sagt Python er soll den `iterator` entpacken."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"execution_count": 4,
|
||||
"id": "30d52051-cee6-4bcd-a622-c70bdd0cae1e",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"0 1 2 3\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"print(*range(4))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "8e2dbb80-5bfd-43ee-83b6-8ef299c70391",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"- 2 Parameter `range(1,4)` -> Zählt in 1er Schritten von dem ersten Parameter bis exklusiv zum zweiten Parameter *1,2,3*"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"id": "fe434e93-729b-466c-a530-125c668f2329",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"1 2 3\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"print(*range(1,4))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "7d5d28a6-b873-4a2b-8e45-b02e75982c10",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"- 3 Parameter `range(1,11,2)` -> Zählt in `2`er Schritten von dem ersten Parameter bis exklusiv zum zweiten Parameter "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"id": "03e36a0d-9d0f-4dcd-8e02-3d234da9fb52",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"1 3 5 7 9\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"print(*range(1,11,2))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "698e2a24-d96e-4f39-b76a-bfa2b6d20297",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"`For-Loops` itertieren über Iteratoren. Listen sind z.b. Iteratoren."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"id": "4f4d9b6c-c262-45a0-ab7a-ac8d3f13d110",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@ -94,7 +198,7 @@
|
||||
"[0, 1, 2, 3, 4]"
|
||||
]
|
||||
},
|
||||
"execution_count": 8,
|
||||
"execution_count": 7,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
@ -106,7 +210,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"execution_count": 8,
|
||||
"id": "fbcb9b7d-2850-41fe-82a5-09ad75191329",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@ -129,7 +233,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 10,
|
||||
"execution_count": 9,
|
||||
"id": "c1cb9b0a-170c-4b45-b329-e28b0f8ee818",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@ -139,18 +243,18 @@
|
||||
"5"
|
||||
]
|
||||
},
|
||||
"execution_count": 10,
|
||||
"execution_count": 9,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"len(l)"
|
||||
"len(l) # Anzahl 'Länge' der Liste l"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 13,
|
||||
"execution_count": 10,
|
||||
"id": "f595c1f5-4945-4ee4-89e7-cde25d2a7e41",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@ -167,13 +271,14 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# range zählt bis 'exklusive' seines Eingabeparameters um folgendes verhalten zu emulieren\n",
|
||||
"for i in range(len(l)):\n",
|
||||
" print(i)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 14,
|
||||
"execution_count": 11,
|
||||
"id": "6902e5e5-0a49-4bce-a03a-f4c4d812ffa7",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@ -190,13 +295,14 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# Iteration über die Indexe der Liste \n",
|
||||
"for i in range(len(l)):\n",
|
||||
" print(l[i])"
|
||||
" print(l[i]) # Zugriff über Index auf die Elemente der Liste"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 15,
|
||||
"execution_count": 12,
|
||||
"id": "4e2f0c81-894d-424d-848f-3e7cc36bd70b",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@ -214,13 +320,22 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# _ wird verwendet für Loops die einfach etwas immer und immer wiederholen sollen\n",
|
||||
"for _ in range(6):\n",
|
||||
" print(\"Hello\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "c555a1d3-dc65-43e1-b19a-070653a34645",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Folgende Dict beispiele Eklären sich dementsprechend selber"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 16,
|
||||
"execution_count": 13,
|
||||
"id": "e1fbf047-ed8c-4a27-9729-6b05ed55140a",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@ -230,7 +345,7 @@
|
||||
"{'a': 5, 'b': 8, 'c': 10}"
|
||||
]
|
||||
},
|
||||
"execution_count": 16,
|
||||
"execution_count": 13,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
@ -242,7 +357,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 17,
|
||||
"execution_count": 14,
|
||||
"id": "faf3bea9-a308-4317-8a5d-ba4281a86671",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@ -252,7 +367,7 @@
|
||||
"dict_values([5, 8, 10])"
|
||||
]
|
||||
},
|
||||
"execution_count": 17,
|
||||
"execution_count": 14,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
@ -263,7 +378,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 18,
|
||||
"execution_count": 15,
|
||||
"id": "52262d79-76d2-4bf4-8f06-8ed55dcff7cc",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@ -284,7 +399,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 20,
|
||||
"execution_count": 16,
|
||||
"id": "280eb1d9-bfe8-4715-a54a-4b40ef542618",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@ -305,7 +420,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 21,
|
||||
"execution_count": 17,
|
||||
"id": "7a0fde62-9fa8-4089-b257-d2a2263b2b0d",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@ -320,13 +435,14 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# Items gibt eine Liste mit tupeln zurück, jedes tuple wird in seine Elemente zerlegt und den Variablen k & v zugewiesen\n",
|
||||
"for k, v in d.items():\n",
|
||||
" print(f\"Key: {k} mit Wert: {v}\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 22,
|
||||
"execution_count": 18,
|
||||
"id": "dc988e8a-135d-483f-9ae0-d20cc861c558",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@ -336,12 +452,13 @@
|
||||
"[0, 1, 4, 9, 16, 25]"
|
||||
]
|
||||
},
|
||||
"execution_count": 22,
|
||||
"execution_count": 18,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# Liste füllen\n",
|
||||
"squared = []\n",
|
||||
"for i in range(6):\n",
|
||||
" squared.append(i*i)\n",
|
||||
@ -350,7 +467,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 23,
|
||||
"execution_count": 19,
|
||||
"id": "94f148fb-a1f3-4bd9-82b0-baa3ad0b9d35",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@ -360,19 +477,20 @@
|
||||
"[0, 1, 4, 9, 16, 25]"
|
||||
]
|
||||
},
|
||||
"execution_count": 23,
|
||||
"execution_count": 19,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# List Comprehension \n",
|
||||
"sq = [n**2 for n in range(6)]\n",
|
||||
"sq"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 25,
|
||||
"execution_count": 20,
|
||||
"id": "3e6d5db7-3cc1-4b21-9ad0-4d3402b4765b",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@ -382,12 +500,13 @@
|
||||
"{0: 0, 1: 1, 2: 4, 3: 9, 4: 16, 5: 25}"
|
||||
]
|
||||
},
|
||||
"execution_count": 25,
|
||||
"execution_count": 20,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# Dict füllen\n",
|
||||
"di = {}\n",
|
||||
"for n in range(6):\n",
|
||||
" di[n] = n**2\n",
|
||||
@ -396,7 +515,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 26,
|
||||
"execution_count": 21,
|
||||
"id": "6bd693d3-8e27-48c2-9fe4-8ecafb98b181",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@ -406,16 +525,25 @@
|
||||
"{0: 0, 1: 1, 2: 4, 3: 9, 4: 16, 5: 25}"
|
||||
]
|
||||
},
|
||||
"execution_count": 26,
|
||||
"execution_count": 21,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# Dictionary Comprehension\n",
|
||||
"dic = {n: n**2 for n in range(6)}\n",
|
||||
"dic"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "bf09cbc2-c2c5-4f59-8ad7-c7c5e9e50f63",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## System Interaction"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 27,
|
||||
@ -511,9 +639,17 @@
|
||||
"input(\"Gebe bitte eine Zahl ein:\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "60afb4f7-e8c5-431e-a592-b9b719f9b68c",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## File Handling"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 34,
|
||||
"execution_count": 24,
|
||||
"id": "d47d956b-f131-4c4c-acad-4adc5ff1508e",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@ -523,19 +659,19 @@
|
||||
"<_io.TextIOWrapper name='test.txt' mode='r' encoding='UTF-8'>"
|
||||
]
|
||||
},
|
||||
"execution_count": 34,
|
||||
"execution_count": 24,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"f = open('test.txt')\n",
|
||||
"f = open('test.txt') # Öffne File und gebe den Handler an f, Standard im Lesemodus\n",
|
||||
"f"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 35,
|
||||
"execution_count": 25,
|
||||
"id": "4d38875a-18f9-4ad6-991b-fc61ea1dd08a",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@ -545,18 +681,18 @@
|
||||
"['Super Secret Message\\n', 'Hallo Welt\\n', 'Geiler Kurs\\n', 'Freitag 15h yeah']"
|
||||
]
|
||||
},
|
||||
"execution_count": 35,
|
||||
"execution_count": 25,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"f.readlines()"
|
||||
"f.readlines() # Lese den Inhalt aus f"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 39,
|
||||
"execution_count": 28,
|
||||
"id": "1c0610b1-b6c2-430f-94c0-e50def936b16",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@ -566,19 +702,19 @@
|
||||
"<_io.TextIOWrapper name='data.txt' mode='w' encoding='UTF-8'>"
|
||||
]
|
||||
},
|
||||
"execution_count": 39,
|
||||
"execution_count": 28,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"data = open('data.txt', 'w')\n",
|
||||
"data = open('data.txt', 'w') # Öffne eine beschreibare File\n",
|
||||
"data"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 40,
|
||||
"execution_count": 29,
|
||||
"id": "1b74ffb0-487a-4ec7-9ed1-3e51b5c76450",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@ -588,29 +724,30 @@
|
||||
"18"
|
||||
]
|
||||
},
|
||||
"execution_count": 40,
|
||||
"execution_count": 29,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"data.write(\"Ich will nachhause\")"
|
||||
"data.write(\"Ich will nachhause\") # Schreibe in die File "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 41,
|
||||
"execution_count": 31,
|
||||
"id": "f831efc1-b548-4a49-bbed-62c8018ecdfe",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Schliese die Files\n",
|
||||
"f.close()\n",
|
||||
"data.close()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 42,
|
||||
"execution_count": 32,
|
||||
"id": "4580acb8-cc79-440c-a463-140547883ded",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@ -623,6 +760,7 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# Standard File handling\n",
|
||||
"f = open('test.txt')\n",
|
||||
"print(f.readlines())\n",
|
||||
"f.close()"
|
||||
@ -630,7 +768,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 44,
|
||||
"execution_count": 33,
|
||||
"id": "50f35e0c-5138-478c-abe9-dae163c467a4",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@ -641,18 +779,18 @@
|
||||
"traceback": [
|
||||
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
||||
"\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)",
|
||||
"Cell \u001b[0;32mIn[44], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43mf\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mreadlines\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n",
|
||||
"Cell \u001b[0;32mIn[33], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43mf\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mreadlines\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m \u001b[38;5;66;03m# File ist geschlossen also ist lesen nicht möglich\u001b[39;00m\n",
|
||||
"\u001b[0;31mValueError\u001b[0m: I/O operation on closed file."
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"f.readlines()"
|
||||
"f.readlines() # File ist geschlossen also ist lesen nicht möglich"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 45,
|
||||
"execution_count": 35,
|
||||
"id": "999e5179-4d96-4b8b-bec6-3f8b0a857291",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@ -670,15 +808,26 @@
|
||||
"traceback": [
|
||||
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
||||
"\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)",
|
||||
"Cell \u001b[0;32mIn[45], line 3\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m \u001b[38;5;28mopen\u001b[39m(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mtest.txt\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mr\u001b[39m\u001b[38;5;124m'\u001b[39m) \u001b[38;5;28;01mas\u001b[39;00m f:\n\u001b[1;32m 2\u001b[0m \u001b[38;5;28mprint\u001b[39m(f\u001b[38;5;241m.\u001b[39mreadlines())\n\u001b[0;32m----> 3\u001b[0m \u001b[43mf\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mreadlines\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n",
|
||||
"Cell \u001b[0;32mIn[35], line 6\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[38;5;28mprint\u001b[39m(f\u001b[38;5;241m.\u001b[39mreadlines())\n\u001b[1;32m 5\u001b[0m \u001b[38;5;66;03m# File ist bereits geschlossen \u001b[39;00m\n\u001b[0;32m----> 6\u001b[0m \u001b[43mf\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mreadlines\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m \u001b[38;5;66;03m# Wirft Fehler\u001b[39;00m\n",
|
||||
"\u001b[0;31mValueError\u001b[0m: I/O operation on closed file."
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# Contexte nehmen einem die Arbeit ab\n",
|
||||
"with open('test.txt', 'r') as f:\n",
|
||||
" print(f.readlines())\n",
|
||||
"f.readlines()"
|
||||
"\n",
|
||||
"# File ist bereits geschlossen \n",
|
||||
"f.readlines() # Wirft Fehler"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "d63dce40-9d51-4ab6-92e6-65fedb982dd8",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Importing"
|
||||
]
|
||||
},
|
||||
{
|
||||
@ -777,7 +926,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 51,
|
||||
"execution_count": 37,
|
||||
"id": "c4c97328-95dd-4e6b-bc9c-857ee5d04e25",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
@ -785,6 +934,27 @@
|
||||
"from math import sqrt"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 38,
|
||||
"id": "1f29d236-0368-4fd4-97c1-a33a6adc7bf3",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"<function math.sqrt(x, /)>"
|
||||
]
|
||||
},
|
||||
"execution_count": 38,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"sqrt"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 52,
|
||||
@ -808,17 +978,17 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"execution_count": 36,
|
||||
"id": "b83a73fe-8f6e-4b22-97bc-c9016206a6bd",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from math import *"
|
||||
"from math import * # Böse nicht mache führt nur zu unerklärbaren Fehlern"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 53,
|
||||
"execution_count": 40,
|
||||
"id": "d1568734-9077-4444-9c0e-5dbf385dc46a",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
@ -828,7 +998,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 54,
|
||||
"execution_count": 41,
|
||||
"id": "718bb6e9-1cda-438d-909a-b51064471d0a",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@ -838,7 +1008,7 @@
|
||||
"np.float64(94.86832980505137)"
|
||||
]
|
||||
},
|
||||
"execution_count": 54,
|
||||
"execution_count": 41,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
@ -849,11 +1019,24 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"execution_count": 42,
|
||||
"id": "806082c4-61fc-4345-bd85-aa4deec1414a",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"<module 'numpy' from '/home/phil/Desktop/programmieren_wise_24_25/Material/env/lib64/python3.12/site-packages/numpy/__init__.py'>"
|
||||
]
|
||||
},
|
||||
"execution_count": 42,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"np"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
@ -872,7 +1055,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.12.5"
|
||||
"version": "3.12.7"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
@ -1955,7 +1955,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.5"
|
||||
"version": "3.12.7"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
2792
Material/wise_24_25/lernmaterial/4.NP_MPL.ipynb
Normal file
@ -1,26 +0,0 @@
|
||||
Age,Sex,Scale Python Exp,Course,Has Voice Assistent Contact,Voice Assistent,Scale Study Satisfaction,Uses Smartphone,Which Smartphone,Has Computer,Which OS,Scale Programming Exp
|
||||
22,Männlich,4,Medienwissenschaften,Ja,Apple Siri,4,Ja,Apple,Ja,Mac OS,2
|
||||
26,Weiblich,3,Medienwissenschaften,Ja,Amazon Alexa,2,Ja,Xiaomi,Ja,Windows 10,3
|
||||
21,Männlich,3,Medienwissenschaften,Ja,Google Now,4,Ja,Sonstige,Ja,Windows 10,3
|
||||
26,Weiblich,4,Medienwissenschaften,Ja,Apple Siri,4,Ja,Samsung,Ja,Windows 10,2
|
||||
24,Weiblich,4,Psychologie,Nein,,4,Ja,Apple,Ja,Windows 11,3
|
||||
23,Männlich,3,Medienwissenschaften,Ja,Amazon Alexa,4,Ja,Samsung,Ja,Windows 10,3
|
||||
21,Männlich,3,Medienwissenschaften,Ja,Amazon Alexa,4,Ja,Samsung,Ja,Windows 10,2
|
||||
22,Weiblich,4,Medienwissenschaften,Nein,,3,Ja,Samsung,Ja,Windows 10,2
|
||||
19,Weiblich,4,Medienwissenschaften,Ja,Apple Siri,3,Ja,Apple,Ja,Windows 11,2
|
||||
21,Weiblich,4,Medienwissenschaften,Ja,Google Now,3,Ja,Samsung,Ja,Windows 10,2
|
||||
20,Weiblich,4,Medienwissenschaften,Ja,Apple Siri,4,Ja,Apple,Ja,Mac OS,2
|
||||
21,Weiblich,4,Medienwissenschaften,Nein,Apple Siri,4,Ja,Apple,Ja,Mac OS,2
|
||||
21,Weiblich,4,Medienwissenschaften,Ja,Amazon Alexa,3,Ja,Samsung,Ja,Windows 11,4
|
||||
20,Männlich,4,Medienwissenschaften,Nein,,3,Ja,Samsung,Ja,Windows 10,3
|
||||
22,Weiblich,4,Medienwissenschaften,Ja,Apple Siri,2,Ja,Apple,Ja,Windows 11,2
|
||||
22,Weiblich,4,Medienwissenschaften,Ja,Amazon Alexa,3,Ja,Apple,Ja,Mac OS,1
|
||||
21,Weiblich,4,Medienwissenschaften,Nein,,3,Ja,Apple,Ja,Mac OS,4
|
||||
19,Männlich,3,Medienwissenschaften,Ja,Apple Siri,4,Ja,Apple,Ja,Windows 10,2
|
||||
30,Weiblich,3,Medienwissenschaften,Ja,Apple Siri,3,Ja,Apple,Ja,Mac OS,2
|
||||
27,Weiblich,4,Medienwissenschaften,Ja,Apple Siri,3,Ja,Apple,Ja,Windows 11,2
|
||||
22,Weiblich,5,Medienwissenschaften,Ja,Amazon Alexa,5,Ja,Xiaomi,Ja,Linux,1
|
||||
21,Männlich,5,Medienwissenschaften,Ja,Apple Siri,4,Ja,Apple,Ja,Windows 10,2
|
||||
30,Männlich,4,Medienwissenschaften,Ja,Amazon Alexa,3,Ja,Samsung,Ja,Windows 11,2
|
||||
23,Weiblich,5,Medienwissenschaften,Ja,Apple Siri,2,Ja,Apple,Ja,Mac OS,1
|
||||
22,Weiblich,3,Medienwissenschaften,Ja,Apple Siri,4,Ja,Apple,Ja,Mac OS,3
|
|
@ -1,100 +0,0 @@
|
||||
Python
|
||||
Python
|
||||
Python
|
||||
Python
|
||||
Python
|
||||
Python
|
||||
Python
|
||||
Python
|
||||
Python
|
||||
Python
|
||||
Python
|
||||
Python
|
||||
Python
|
||||
Python
|
||||
Python
|
||||
Python
|
||||
Python
|
||||
Python
|
||||
Python
|
||||
Python
|
||||
Python
|
||||
Python
|
||||
Python
|
||||
Python
|
||||
Python
|
||||
Python
|
||||
Python
|
||||
Python
|
||||
Python
|
||||
Python
|
||||
Python
|
||||
Python
|
||||
Python
|
||||
Python
|
||||
Python
|
||||
Python
|
||||
Python
|
||||
Python
|
||||
Python
|
||||
Python
|
||||
Python
|
||||
Python
|
||||
Python
|
||||
Python
|
||||
Python
|
||||
Python
|
||||
Python
|
||||
Python
|
||||
Python
|
||||
Python
|
||||
Python
|
||||
Python
|
||||
Python
|
||||
Python
|
||||
Python
|
||||
Python
|
||||
Python
|
||||
Python
|
||||
Python
|
||||
Python
|
||||
Python
|
||||
Python
|
||||
Python
|
||||
Python
|
||||
Python
|
||||
Python
|
||||
Python
|
||||
Python
|
||||
Python
|
||||
Python
|
||||
Python
|
||||
Python
|
||||
Python
|
||||
Python
|
||||
Python
|
||||
Python
|
||||
Python
|
||||
Python
|
||||
Python
|
||||
Python
|
||||
Python
|
||||
Python
|
||||
Python
|
||||
Python
|
||||
Python
|
||||
Python
|
||||
Python
|
||||
Python
|
||||
Python
|
||||
Python
|
||||
Python
|
||||
Python
|
||||
Python
|
||||
Python
|
||||
Python
|
||||
Python
|
||||
Python
|
||||
Python
|
||||
Python
|
||||
Python
|
@ -1,536 +0,0 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "965d3b35-ff65-4a31-93ac-0389e578772a",
|
||||
"metadata": {
|
||||
"editable": true,
|
||||
"slideshow": {
|
||||
"slide_type": "slide"
|
||||
},
|
||||
"tags": []
|
||||
},
|
||||
"source": [
|
||||
"# How to Jupyter\n",
|
||||
"\n",
|
||||
"Jupyter Notebook is an open-source web application that allows you to create and share documents containing live code, equations, visualizations, and narrative text.\n",
|
||||
"\n",
|
||||
"It's widely used for interactive computing, data analysis, scientific research, education, and data visualization.\n",
|
||||
"\n",
|
||||
"Some key features and components of Jupyter Notebook includes:\n",
|
||||
"\n",
|
||||
"---\n",
|
||||
"\n",
|
||||
"**At the bottom left is a control pad with which you can navigate through the slides.**\n",
|
||||
"\n",
|
||||
"(How to create slides will be explained later.)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "263e7df3-97cc-4568-9d50-59d073d4a7d9",
|
||||
"metadata": {
|
||||
"editable": true,
|
||||
"slideshow": {
|
||||
"slide_type": "subslide"
|
||||
},
|
||||
"tags": []
|
||||
},
|
||||
"source": [
|
||||
"1. **Interactive Environment**\n",
|
||||
"2. **Support for Multiple Programming Languages**\n",
|
||||
"3. **Rich Text Support**\n",
|
||||
"4. **Data Visualization**\n",
|
||||
"5. **Equation Rendering**\n",
|
||||
"6. **Easy Sharing**\n",
|
||||
"7. **Notebook Extensions**\n",
|
||||
"8. **Data Analysis and Exploration**\n",
|
||||
"9. **Education and Learning**"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "733cbe91-df68-44d1-b546-8c229fa0dc90",
|
||||
"metadata": {
|
||||
"editable": true,
|
||||
"slideshow": {
|
||||
"slide_type": "skip"
|
||||
},
|
||||
"tags": []
|
||||
},
|
||||
"source": [
|
||||
"1. **Interactive Environment**: Jupyter Notebook provides an interactive environment where you can write and execute code in chunks called cells. This allows you to see the immediate results of your code as you work on it.\n",
|
||||
"\n",
|
||||
"2. **Support for Multiple Programming Languages**: While Jupyter was originally designed for Python, it supports various programming languages such as Julia, R, and more through language-specific kernels. Each kernel enables you to execute code written in a specific language."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "01244173-08be-4c4c-9675-27f09620e34b",
|
||||
"metadata": {
|
||||
"editable": true,
|
||||
"slideshow": {
|
||||
"slide_type": "skip"
|
||||
},
|
||||
"tags": []
|
||||
},
|
||||
"source": [
|
||||
"3. **Rich Text Support**: You can combine code cells with text cells to create a narrative that explains the code, its purpose, and the analysis being performed. This makes it a powerful tool for creating data-driven documents and reports.\n",
|
||||
"\n",
|
||||
"4. **Data Visualization**: Jupyter Notebook supports the integration of various data visualization libraries such as Matplotlib, Seaborn, Plotly, and more. This allows you to create charts, graphs, and other visualizations to better understand your data."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "2d52825d-b8fa-456b-98f4-574585e3b3bb",
|
||||
"metadata": {
|
||||
"editable": true,
|
||||
"slideshow": {
|
||||
"slide_type": "skip"
|
||||
},
|
||||
"tags": []
|
||||
},
|
||||
"source": [
|
||||
"5. **Equation Rendering**: It supports rendering mathematical equations using LaTeX notation, which is useful for scientific and mathematical documentation.\n",
|
||||
"\n",
|
||||
"6. **Easy Sharing**: Jupyter Notebooks can be easily shared with colleagues, collaborators, or the public. Notebooks can be exported to various formats such as HTML, PDF, and slideshows. There are also platforms like GitHub and JupyterHub that allow for collaborative editing and sharing."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "2c1679b9-b0db-4bf4-9bbc-9d33ca7ffeb0",
|
||||
"metadata": {
|
||||
"editable": true,
|
||||
"slideshow": {
|
||||
"slide_type": "skip"
|
||||
},
|
||||
"tags": []
|
||||
},
|
||||
"source": [
|
||||
"7. **Notebook Extensions**: Jupyter Notebook has a wide range of extensions that can be added to enhance functionality. These extensions can provide additional features like code linting, spell checking, and more.\n",
|
||||
"\n",
|
||||
"8. **Data Analysis and Exploration**: Jupyter Notebook is widely used for data analysis and exploration tasks. Analysts and researchers can import data, clean it, perform statistical analysis, and visualize the results all within the same document.\n",
|
||||
"\n",
|
||||
"9. **Education and Learning**: Jupyter Notebook is used in educational settings to teach programming, data science, and various scientific concepts. Its interactive nature helps learners experiment and grasp concepts more effectively."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "10d93371-42d5-40df-8a30-2ff49dde94d5",
|
||||
"metadata": {
|
||||
"editable": true,
|
||||
"slideshow": {
|
||||
"slide_type": "skip"
|
||||
},
|
||||
"tags": []
|
||||
},
|
||||
"source": [
|
||||
"---"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "6bce7ad3-61cd-4087-b35e-bddcb8c9d3c8",
|
||||
"metadata": {
|
||||
"editable": true,
|
||||
"slideshow": {
|
||||
"slide_type": "slide"
|
||||
},
|
||||
"tags": []
|
||||
},
|
||||
"source": [
|
||||
"## Install Python\n",
|
||||
"\n",
|
||||
"In this module we will learn the programming language Python. To do this, we need to install it on our system in order to be able to use Jupyter Notebook in advance.\n",
|
||||
"\n",
|
||||
"The [Python.org](https://www.python.org/) website contains a download link for each operating system. Under [www.python.org/downloads/](https://www.python.org/downloads/) you can download the latest Python version.\n",
|
||||
"\n",
|
||||
"After following the installation wizard (this depends heavily on which operating system you are using, so we do not show this here), you have successfully installed Python.\n",
|
||||
"\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "eec4a5bc-9c06-4680-9aae-d388f0a2bec1",
|
||||
"metadata": {
|
||||
"editable": true,
|
||||
"slideshow": {
|
||||
"slide_type": "slide"
|
||||
},
|
||||
"tags": []
|
||||
},
|
||||
"source": [
|
||||
"## Opening a Terminal\n",
|
||||
"\n",
|
||||
"**Windows**: \n",
|
||||
"\n",
|
||||
"1. `Press Start` (⊞ - Windows Symbol) -> type and search for `cmd`\n",
|
||||
"2. Or Press the Windows Symbol ⊞ + the R key `(Windows + R)` -> type `cmd` in the window that appeard -> press `Enter`\n",
|
||||
"\n",
|
||||
"**Mac**:\n",
|
||||
"\n",
|
||||
"Open launchpad and Search for `Terminal`\n",
|
||||
"\n",
|
||||
"**Linux**:\n",
|
||||
"\n",
|
||||
"It depends on your Environment. But `Ctrl + Alt + T` should do the Trick on every System."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "50a7f663-3a14-4de7-bf03-edaf571681d8",
|
||||
"metadata": {
|
||||
"editable": true,
|
||||
"slideshow": {
|
||||
"slide_type": "slide"
|
||||
},
|
||||
"tags": []
|
||||
},
|
||||
"source": [
|
||||
"## Upgrading Pip and Installing Jupyter\n",
|
||||
"\n",
|
||||
"---\n",
|
||||
"\n",
|
||||
"### Pip - Python Package Index\n",
|
||||
"\n",
|
||||
"pip is the de-facto and recommended package management programme for Python packages from the Python Package Index (PyPI). At the beginning, the project was called \"pyinstall\".\n",
|
||||
"\n",
|
||||
"It's website is found under [pypi.org](https://pypi.org/). Every Package you need, can and should be derived from PyPI.\n",
|
||||
"\n",
|
||||
"---\n",
|
||||
"\n",
|
||||
"After opening the terminal, pip should first be updated to the latest version. To do this, enter the command:\n",
|
||||
"\n",
|
||||
"`python3 -m pip install -U pip`"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"id": "99fcae70-17c9-447d-afdb-1e2cd41c3457",
|
||||
"metadata": {
|
||||
"editable": true,
|
||||
"slideshow": {
|
||||
"slide_type": ""
|
||||
},
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Requirement already satisfied: pip in /home/phil/Desktop/einfuhrung-in-die-programmierung/env/lib/python3.11/site-packages (23.2.1)\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"!python3 -m pip install -U pip"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "99db8dd0-cd07-4a13-a9e8-073188d7a492",
|
||||
"metadata": {
|
||||
"editable": true,
|
||||
"slideshow": {
|
||||
"slide_type": "skip"
|
||||
},
|
||||
"tags": []
|
||||
},
|
||||
"source": [
|
||||
"---"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "3f2a5398-4480-4db6-a4dd-7bba2bdf90a3",
|
||||
"metadata": {
|
||||
"editable": true,
|
||||
"slideshow": {
|
||||
"slide_type": "slide"
|
||||
},
|
||||
"tags": []
|
||||
},
|
||||
"source": [
|
||||
"### Installing Jupyter\n",
|
||||
"\n",
|
||||
"Now we can install some software we only need two packages depending on your need.\n",
|
||||
"\n",
|
||||
"`virtualenv` is a tool to create isolated Python environments. You can read more about it in the [Virtualenv documentation](https://virtualenv.pypa.io/en/stable/)."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "3a6b4743-7d3a-4e87-8e6a-108d526df1ca",
|
||||
"metadata": {
|
||||
"editable": true,
|
||||
"slideshow": {
|
||||
"slide_type": "subslide"
|
||||
},
|
||||
"tags": []
|
||||
},
|
||||
"source": [
|
||||
"1. We need to install the package `virtualenv` (venv)\n",
|
||||
"\n",
|
||||
"`python3 -m pip install virtualenv`"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "9eaf8cf1-91e8-47cb-85a6-7687b641ecac",
|
||||
"metadata": {
|
||||
"editable": true,
|
||||
"slideshow": {
|
||||
"slide_type": "subslide"
|
||||
},
|
||||
"tags": []
|
||||
},
|
||||
"source": [
|
||||
"2. Now we can create an virtual environment in any folder we want. (A good practice is a venv for every project)\n",
|
||||
"\n",
|
||||
"`python3 -m venv env`\n",
|
||||
"\n",
|
||||
"the name `env` is the folder which has all of our environment information, it can be named everything, but for convinence `env` should be used."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "810aa9c6-4a5d-4f85-8168-31497850f88b",
|
||||
"metadata": {
|
||||
"editable": true,
|
||||
"slideshow": {
|
||||
"slide_type": "subslide"
|
||||
},
|
||||
"tags": []
|
||||
},
|
||||
"source": [
|
||||
"3. After installing `virtualenv` we need to activate it\n",
|
||||
"\n",
|
||||
"**Windows**: `.\\env\\Scripts\\activate`\n",
|
||||
"\n",
|
||||
"**Linux / Mac**: `source env/bin/activate`\n",
|
||||
"\n",
|
||||
"your command prompt will be modified to reflect the change."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "d9f09c52-1bea-41e7-a6f8-f19d73553687",
|
||||
"metadata": {
|
||||
"editable": true,
|
||||
"slideshow": {
|
||||
"slide_type": "subslide"
|
||||
},
|
||||
"tags": []
|
||||
},
|
||||
"source": [
|
||||
"4. Now you can install jupyter and other dependencies without tinkering with your system\n",
|
||||
"\n",
|
||||
"`pip install jupyterlab`\n",
|
||||
"\n",
|
||||
"-> We can use pip direct because we specified the python version with venv implicitly."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "92bbebdf-2dd0-471e-a98d-74ebdf3e1926",
|
||||
"metadata": {
|
||||
"editable": true,
|
||||
"slideshow": {
|
||||
"slide_type": "skip"
|
||||
},
|
||||
"tags": []
|
||||
},
|
||||
"source": [
|
||||
"---"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "c889baa0-4202-4811-89b9-8b8bb578f05a",
|
||||
"metadata": {
|
||||
"editable": true,
|
||||
"slideshow": {
|
||||
"slide_type": "slide"
|
||||
},
|
||||
"tags": []
|
||||
},
|
||||
"source": [
|
||||
"## Starting Jupyter for the first time\n",
|
||||
"\n",
|
||||
"the last thing we need to tab out of the command line is to start Jupyter\n",
|
||||
"\n",
|
||||
"therefor type `jupyter lab` and Enter. Do not close the command line it will stop jupyter!\n",
|
||||
"\n",
|
||||
"After a little waiting time jupyter prompts you with messages one of them should look like:\n",
|
||||
"\n",
|
||||
"`http(s)://<server:port>/<lab-location>/lab`\n",
|
||||
"\n",
|
||||
"copy the url and open it in your Webbrowser of Choice. Now we can Proceed.\n",
|
||||
"\n",
|
||||
"**Note**: This step needs to be done everytime you want to start Jupyter!\n",
|
||||
"\n",
|
||||
"---"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "594997a1-37ed-42a4-835d-5a4ab92eea70",
|
||||
"metadata": {
|
||||
"editable": true,
|
||||
"slideshow": {
|
||||
"slide_type": "slide"
|
||||
},
|
||||
"tags": []
|
||||
},
|
||||
"source": [
|
||||
"# Alternatives "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "1a432129-1fcb-4ee8-a2eb-ebca101dd501",
|
||||
"metadata": {
|
||||
"editable": true,
|
||||
"slideshow": {
|
||||
"slide_type": "subslide"
|
||||
},
|
||||
"tags": []
|
||||
},
|
||||
"source": [
|
||||
"## (Mini)conda \n",
|
||||
"\n",
|
||||
"conda from Ananconda Inc. is an open source package and environment manager for many languages that encludes everything we needs.\n",
|
||||
"\n",
|
||||
"For most purposes miniconda should do the trick. You can download it here [conda docs](https://docs.conda.io/en/latest/miniconda.html)\n",
|
||||
"\n",
|
||||
"After installing you can change every `python3 -m pip` and `pip` command with `conda`."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "31415a9f-6949-434a-b714-c1c36dddf99a",
|
||||
"metadata": {
|
||||
"editable": true,
|
||||
"slideshow": {
|
||||
"slide_type": "subslide"
|
||||
},
|
||||
"tags": []
|
||||
},
|
||||
"source": [
|
||||
"## Jupyter Lab Desktop \n",
|
||||
"\n",
|
||||
"As there description on [GitHub](https://github.com/jupyterlab/jupyterlab-desktop) stated \n",
|
||||
"\n",
|
||||
"**JupyterLab Desktop is the cross-platform desktop application for JupyterLab. It is the quickest and easiest way to get started with Jupyter notebooks on your personal computer, with the flexibility for advanced use cases.**\n",
|
||||
"\n",
|
||||
"its nothing else than a selfcontained webbrowser bundeld with Jupyter Lab. You can download a binary for your operating System under there [GitHub Releases](https://github.com/jupyterlab/jupyterlab-desktop/releases) page.\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "a9d2fead-7d7e-427c-bf35-0f5d379f9ddc",
|
||||
"metadata": {
|
||||
"editable": true,
|
||||
"slideshow": {
|
||||
"slide_type": "subslide"
|
||||
},
|
||||
"tags": []
|
||||
},
|
||||
"source": [
|
||||
"## Note\n",
|
||||
"\n",
|
||||
"Every Process has its Advantages and Disadvantages and depends on your needs and workflow.\n",
|
||||
"\n",
|
||||
"The easiest way isn't always the best.\n",
|
||||
"\n",
|
||||
"If you have no command line experience try to get used to it and don't use Jupyter Lab Desktop."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "68563ada-3ac1-421b-ab82-5be195a75f23",
|
||||
"metadata": {
|
||||
"editable": true,
|
||||
"slideshow": {
|
||||
"slide_type": "skip"
|
||||
},
|
||||
"tags": []
|
||||
},
|
||||
"source": [
|
||||
"---"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "e66d9571-a154-4e4b-b612-9ba9151cd6cd",
|
||||
"metadata": {
|
||||
"editable": true,
|
||||
"slideshow": {
|
||||
"slide_type": "skip"
|
||||
},
|
||||
"tags": []
|
||||
},
|
||||
"source": [
|
||||
"# Jupyter Tricks\n",
|
||||
"\n",
|
||||
"## Package handeling\n",
|
||||
"\n",
|
||||
"Our course provides a requirements.txt file, take a look.\n",
|
||||
"\n",
|
||||
"This file can be created using `pip freeze > requirements.txt` and contains all of your environment data.\n",
|
||||
"\n",
|
||||
"To use the file we need to install the content. Thankfully pythons pip provides an easy way to this\n",
|
||||
"\n",
|
||||
"just start a new jupyter notebook and type in the first cell `!pip install -r requirements.txt` and run the cell.\n",
|
||||
"\n",
|
||||
"## Markdown \n",
|
||||
"\n",
|
||||
"Making notes in Jupyter is just as powerful. It uses a technology named Markdown which is just another way to write [HTML](https://en.wikipedia.org/wiki/HTML) (The Backbone of the Internet)\n",
|
||||
"\n",
|
||||
"Some good cheatSheets to learn this simple typewriter can be found under:\n",
|
||||
"\n",
|
||||
"1. [Markdown Guide](https://www.markdownguide.org/cheat-sheet/)\n",
|
||||
"2. [Adam P Markdown Wiki](https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet)\n",
|
||||
"3. [Markdown Table Generator](https://www.tablesgenerator.com/markdown_tables)\n",
|
||||
"\n",
|
||||
"## Slides and Presentations\n",
|
||||
"\n",
|
||||
"We have a whole Lesson for that but here is a quick example to look in [mljar.com](https://mljar.com/blog/jupyter-notebook-presentation/)\n",
|
||||
"\n",
|
||||
"## Debugging\n",
|
||||
"\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "d0f136f2-5975-489d-819b-b6e6296286a6",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.5"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
@ -1,33 +0,0 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "287561ee-f201-49ca-867c-dd8c2028b82e",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.5"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
@ -1,33 +0,0 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "2316e04b-4795-443d-8370-57302600dc81",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.5"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
@ -1,2 +0,0 @@
|
||||
фпЕ╕8и╣
|
||||
Лjгн├░ёЦK║вi╒Р$& =╨л╨(N▐g│≈╔СTв
|
@ -1,93 +0,0 @@
|
||||
from dash import Dash, html, dcc, dash_table
|
||||
import dash_bootstrap_components as dbc
|
||||
import plotly.graph_objects as go
|
||||
from plotly.subplots import make_subplots
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
|
||||
# Read Data
|
||||
df = pd.read_excel('evaluation.xlsx', sheet_name='results')
|
||||
|
||||
# Add graph data
|
||||
course = ["{} <br> n={}".format(c,s) for c, s in zip(df['Course'], df['Submissions'])]
|
||||
avg = df['Avg. Score']
|
||||
max = df['Max Score']
|
||||
|
||||
# Relative data
|
||||
max_rel = df['Max Score'].sum()
|
||||
avg_rel = np.array([c/s*100 for c, s in zip(df['Avg. Score'], df['Max Score'])])
|
||||
avg_rel_sum = df['Avg. Score'].sum() / max_rel * 100
|
||||
|
||||
# Make traces for graph
|
||||
avg_trace = go.Bar(x=course, y=avg, xaxis='x1', yaxis='y1',
|
||||
marker=dict(color='#0099ff'),
|
||||
name='Average Score<br>over all Students')
|
||||
max_trace = go.Bar(x=course, y=max, xaxis='x1', yaxis='y1',
|
||||
marker=dict(color='#404040'),
|
||||
name='Possible Max Score<br>Per Notebook')
|
||||
avg_rel_trace = go.Scatter(x=course, y=avg_rel, xaxis='x1', yaxis='y2',
|
||||
marker=dict(color='#e00030'),
|
||||
name='Average Score (in %)<br>Per Notebook')
|
||||
|
||||
perc_trace = go.Scatter(x=course, y=avg_rel, xaxis='x1', yaxis='y2',
|
||||
mode="text+lines",
|
||||
marker=dict(color='#e00030'),
|
||||
name='Average Score (in %)<br>Per Notebook',
|
||||
text=[str(n) for n in avg_rel], texttemplate='%{text:.0f}% ',
|
||||
textposition=[
|
||||
'top center', 'top right', 'middle left',
|
||||
'middle left', 'middle left', 'top left',
|
||||
'top left', 'bottom left'
|
||||
],
|
||||
textfont={'size': 12})
|
||||
|
||||
def bar():
|
||||
fig = make_subplots(specs=[[{"secondary_y": True}]])
|
||||
|
||||
fig.update_layout(template="plotly_dark")
|
||||
|
||||
# Y-Axis Title
|
||||
fig.update_yaxes(title_text="<b>Relative Score (in %)</b>", secondary_y=True)
|
||||
fig.update_yaxes(title_text="<b>Score</b>", secondary_y=False)
|
||||
|
||||
# Add Plots
|
||||
fig.add_trace(avg_trace)
|
||||
fig.add_trace(max_trace)
|
||||
fig.add_trace(perc_trace)
|
||||
#fig.add_trace(avg_rel_trace)
|
||||
return fig
|
||||
|
||||
|
||||
# Create Dash
|
||||
app = Dash(__name__, external_stylesheets=[dbc.themes.CYBORG, dbc.icons.FONT_AWESOME])
|
||||
|
||||
header = dbc.Row([
|
||||
html.H1('Einführung in die Programmierung für Nicht-Informatiker*innen', className="text-primary text-center fs-3"),
|
||||
html.H2('WiSe 23/24 Results', className="text-secondary text-center fs-4")
|
||||
])
|
||||
|
||||
|
||||
app.layout = dbc.Container([
|
||||
header,
|
||||
dbc.Row([dcc.Graph(figure=bar())]),
|
||||
html.Br(),
|
||||
dbc.Row([
|
||||
dbc.Alert([
|
||||
html.I(className="bi bi-info-circle-fill me-2"),
|
||||
html.Big("{:.0f}% of all tasks were solved correctly.".format(avg_rel_sum), className="text-center")
|
||||
],
|
||||
color='info', className="d-flex align-items-center")
|
||||
])
|
||||
])
|
||||
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
#app.run(debug=True)
|
||||
#from plotly.offline.offline import _plot_html
|
||||
import plotly
|
||||
plotly.offline.plot(
|
||||
bar(),
|
||||
show_link=False,
|
||||
filename = 'eval.html'
|
||||
)
|
@ -1,162 +0,0 @@
|
||||
aiofiles @ file:///home/conda/feedstock_root/build_artifacts/aiofiles_1664378549280/work
|
||||
aiosqlite @ file:///home/conda/feedstock_root/build_artifacts/aiosqlite_1682491975081/work
|
||||
alembic==1.11.1
|
||||
anyio @ file:///home/conda/feedstock_root/build_artifacts/anyio_1666191106763/work/dist
|
||||
appnope @ file:///home/conda/feedstock_root/build_artifacts/appnope_1649077682618/work
|
||||
argon2-cffi @ file:///home/conda/feedstock_root/build_artifacts/argon2-cffi_1640817743617/work
|
||||
argon2-cffi-bindings @ file:///Users/runner/miniforge3/conda-bld/argon2-cffi-bindings_1666850770474/work
|
||||
arrow==1.2.3
|
||||
asttokens @ file:///home/conda/feedstock_root/build_artifacts/asttokens_1670263926556/work
|
||||
attrs @ file:///home/conda/feedstock_root/build_artifacts/attrs_1683124902633/work
|
||||
Babel @ file:///home/conda/feedstock_root/build_artifacts/babel_1677767029043/work
|
||||
backcall @ file:///home/conda/feedstock_root/build_artifacts/backcall_1592338393461/work
|
||||
backports.functools-lru-cache @ file:///home/conda/feedstock_root/build_artifacts/backports.functools_lru_cache_1618230623929/work
|
||||
beautifulsoup4 @ file:///home/conda/feedstock_root/build_artifacts/beautifulsoup4_1680888073205/work
|
||||
bleach @ file:///home/conda/feedstock_root/build_artifacts/bleach_1674535352125/work
|
||||
boltons @ file:///home/conda/feedstock_root/build_artifacts/boltons_1677499911949/work
|
||||
branca==0.6.0
|
||||
brotlipy @ file:///Users/runner/miniforge3/conda-bld/brotlipy_1666764769951/work
|
||||
certifi==2022.12.7
|
||||
cffi @ file:///Users/runner/miniforge3/conda-bld/cffi_1671179491669/work
|
||||
charset-normalizer @ file:///home/conda/feedstock_root/build_artifacts/charset-normalizer_1678108872112/work
|
||||
colorama @ file:///home/conda/feedstock_root/build_artifacts/colorama_1666700638685/work
|
||||
comm @ file:///home/conda/feedstock_root/build_artifacts/comm_1679481329611/work
|
||||
conda==23.3.1
|
||||
conda-package-handling @ file:///home/conda/feedstock_root/build_artifacts/conda-package-handling_1669907009957/work
|
||||
conda_package_streaming @ file:///home/conda/feedstock_root/build_artifacts/conda-package-streaming_1669733752472/work
|
||||
contourpy @ file:///Users/runner/miniforge3/conda-bld/contourpy_1673633754816/work
|
||||
cryptography @ file:///Users/runner/miniforge3/conda-bld/cryptography-split_1681508772994/work
|
||||
cycler @ file:///home/conda/feedstock_root/build_artifacts/cycler_1635519461629/work
|
||||
debugpy @ file:///Users/runner/miniforge3/conda-bld/debugpy_1680755597432/work
|
||||
decorator @ file:///home/conda/feedstock_root/build_artifacts/decorator_1641555617451/work
|
||||
defusedxml @ file:///home/conda/feedstock_root/build_artifacts/defusedxml_1615232257335/work
|
||||
entrypoints @ file:///home/conda/feedstock_root/build_artifacts/entrypoints_1643888246732/work
|
||||
executing @ file:///home/conda/feedstock_root/build_artifacts/executing_1667317341051/work
|
||||
fastjsonschema @ file:///home/conda/feedstock_root/build_artifacts/python-fastjsonschema_1677336799617/work/dist
|
||||
flit_core @ file:///home/conda/feedstock_root/build_artifacts/flit-core_1667734568827/work/source/flit_core
|
||||
folium==0.14.0
|
||||
fonttools @ file:///Users/runner/miniforge3/conda-bld/fonttools_1680021377495/work
|
||||
fqdn==1.5.1
|
||||
greenlet==2.0.2
|
||||
idna @ file:///home/conda/feedstock_root/build_artifacts/idna_1663625384323/work
|
||||
importlib-metadata @ file:///home/conda/feedstock_root/build_artifacts/importlib-metadata_1682176699712/work
|
||||
importlib-resources @ file:///home/conda/feedstock_root/build_artifacts/importlib_resources_1676919000169/work
|
||||
ipycanvas==0.13.1
|
||||
ipykernel @ file:///Users/runner/miniforge3/conda-bld/ipykernel_1679336661730/work
|
||||
ipympl @ file:///home/conda/feedstock_root/build_artifacts/ipympl_1676535632179/work
|
||||
ipython @ file:///Users/runner/miniforge3/conda-bld/ipython_1682709462702/work
|
||||
ipython-genutils==0.2.0
|
||||
ipywidgets @ file:///home/conda/feedstock_root/build_artifacts/ipywidgets_1680023138361/work
|
||||
isoduration==20.11.0
|
||||
jedi @ file:///home/conda/feedstock_root/build_artifacts/jedi_1669134318875/work
|
||||
Jinja2 @ file:///home/conda/feedstock_root/build_artifacts/jinja2_1654302431367/work
|
||||
joblib==1.2.0
|
||||
json5 @ file:///home/conda/feedstock_root/build_artifacts/json5_1600692310011/work
|
||||
jsonpatch @ file:///home/conda/feedstock_root/build_artifacts/jsonpatch_1632759296524/work
|
||||
jsonpointer==2.0
|
||||
jsonschema @ file:///home/conda/feedstock_root/build_artifacts/jsonschema-meta_1669810440410/work
|
||||
jupyter-events @ file:///home/conda/feedstock_root/build_artifacts/jupyter_events_1673559782596/work
|
||||
jupyter-server==1.24.0
|
||||
jupyter-ydoc @ file:///home/conda/feedstock_root/build_artifacts/jupyter_ydoc_1679325289144/work/dist
|
||||
jupyter_client==7.4.9
|
||||
jupyter_core @ file:///Users/runner/miniforge3/conda-bld/jupyter_core_1678994269065/work
|
||||
jupyter_server_fileid @ file:///home/conda/feedstock_root/build_artifacts/jupyter_server_fileid_1681071667289/work
|
||||
jupyter_server_terminals @ file:///home/conda/feedstock_root/build_artifacts/jupyter_server_terminals_1673491454549/work
|
||||
jupyter_server_ydoc @ file:///home/conda/feedstock_root/build_artifacts/jupyter_server_ydoc_1678043727957/work
|
||||
jupyterlab @ file:///home/conda/feedstock_root/build_artifacts/jupyterlab_1680263892608/work
|
||||
jupyterlab-pygments @ file:///home/conda/feedstock_root/build_artifacts/jupyterlab_pygments_1649936611996/work
|
||||
jupyterlab-vim==0.16.0
|
||||
jupyterlab-widgets @ file:///home/conda/feedstock_root/build_artifacts/jupyterlab_widgets_1680020489668/work
|
||||
jupyterlab_server @ file:///home/conda/feedstock_root/build_artifacts/jupyterlab_server_1681424698040/work
|
||||
jupyterthemes==0.20.0
|
||||
kiwisolver @ file:///Users/runner/miniforge3/conda-bld/kiwisolver_1666805801984/work
|
||||
latex2mathml==3.76.0
|
||||
lesscpy==0.15.1
|
||||
Mako==1.2.4
|
||||
MarkupSafe @ file:///Users/runner/miniforge3/conda-bld/markupsafe_1674135896840/work
|
||||
matplotlib @ file:///Users/runner/miniforge3/conda-bld/matplotlib-suite_1678135672482/work
|
||||
matplotlib-inline @ file:///home/conda/feedstock_root/build_artifacts/matplotlib-inline_1660814786464/work
|
||||
mistune @ file:///home/conda/feedstock_root/build_artifacts/mistune_1675771498296/work
|
||||
munkres==1.1.4
|
||||
nbclassic @ file:///home/conda/feedstock_root/build_artifacts/nbclassic_1683202085119/work
|
||||
nbclient @ file:///home/conda/feedstock_root/build_artifacts/nbclient_1682452223743/work
|
||||
nbconvert @ file:///home/conda/feedstock_root/build_artifacts/nbconvert-meta_1681137024412/work
|
||||
nbformat @ file:///home/conda/feedstock_root/build_artifacts/nbformat_1679336765223/work
|
||||
nbgrader==0.8.2
|
||||
nbslide==0.1.1
|
||||
nest-asyncio @ file:///home/conda/feedstock_root/build_artifacts/nest-asyncio_1664684991461/work
|
||||
notebook @ file:///home/conda/feedstock_root/build_artifacts/notebook_1680870634737/work
|
||||
notebook_shim @ file:///home/conda/feedstock_root/build_artifacts/notebook-shim_1682360583588/work
|
||||
numpy @ file:///Users/runner/miniforge3/conda-bld/numpy_1682210335660/work
|
||||
packaging @ file:///home/conda/feedstock_root/build_artifacts/packaging_1681337016113/work
|
||||
pandas @ file:///Users/runner/miniforge3/conda-bld/pandas_1682331738075/work
|
||||
pandocfilters @ file:///home/conda/feedstock_root/build_artifacts/pandocfilters_1631603243851/work
|
||||
parso @ file:///home/conda/feedstock_root/build_artifacts/parso_1638334955874/work
|
||||
perlin-noise==1.12
|
||||
pexpect @ file:///home/conda/feedstock_root/build_artifacts/pexpect_1667297516076/work
|
||||
pickleshare @ file:///home/conda/feedstock_root/build_artifacts/pickleshare_1602536217715/work
|
||||
Pillow @ file:///Users/runner/miniforge3/conda-bld/pillow_1680694470888/work
|
||||
pkgutil_resolve_name @ file:///home/conda/feedstock_root/build_artifacts/pkgutil-resolve-name_1633981968097/work
|
||||
platformdirs @ file:///home/conda/feedstock_root/build_artifacts/platformdirs_1682644429438/work
|
||||
pluggy @ file:///home/conda/feedstock_root/build_artifacts/pluggy_1667232663820/work
|
||||
ply==3.11
|
||||
pooch @ file:///home/conda/feedstock_root/build_artifacts/pooch_1679580333621/work
|
||||
prometheus-client @ file:///home/conda/feedstock_root/build_artifacts/prometheus_client_1674535637125/work
|
||||
prompt-toolkit @ file:///home/conda/feedstock_root/build_artifacts/prompt-toolkit_1677600924538/work
|
||||
psutil @ file:///Users/runner/miniforge3/conda-bld/psutil_1681775314478/work
|
||||
ptyprocess @ file:///home/conda/feedstock_root/build_artifacts/ptyprocess_1609419310487/work/dist/ptyprocess-0.7.0-py2.py3-none-any.whl
|
||||
pure-eval @ file:///home/conda/feedstock_root/build_artifacts/pure_eval_1642875951954/work
|
||||
pycosat @ file:///Users/runner/miniforge3/conda-bld/pycosat_1666836649241/work
|
||||
pycparser @ file:///home/conda/feedstock_root/build_artifacts/pycparser_1636257122734/work
|
||||
Pygments @ file:///home/conda/feedstock_root/build_artifacts/pygments_1681904169130/work
|
||||
pyobjc-core @ file:///Users/runner/miniforge3/conda-bld/pyobjc-core_1681824942775/work
|
||||
pyobjc-framework-Cocoa @ file:///Users/runner/miniforge3/conda-bld/pyobjc-framework-cocoa_1681878639437/work
|
||||
pyOpenSSL @ file:///home/conda/feedstock_root/build_artifacts/pyopenssl_1680037383858/work
|
||||
pyparsing @ file:///home/conda/feedstock_root/build_artifacts/pyparsing_1652235407899/work
|
||||
pyrsistent @ file:///Users/runner/miniforge3/conda-bld/pyrsistent_1672681537831/work
|
||||
PySocks @ file:///home/conda/feedstock_root/build_artifacts/pysocks_1661604839144/work
|
||||
python-dateutil @ file:///home/conda/feedstock_root/build_artifacts/python-dateutil_1626286286081/work
|
||||
python-json-logger @ file:///home/conda/feedstock_root/build_artifacts/python-json-logger_1677079630776/work
|
||||
pytz @ file:///home/conda/feedstock_root/build_artifacts/pytz_1680088766131/work
|
||||
PyYAML @ file:///Users/runner/miniforge3/conda-bld/pyyaml_1666772661993/work
|
||||
pyzmq @ file:///Users/runner/miniforge3/conda-bld/pyzmq_1679317074020/work
|
||||
rapidfuzz==3.0.0
|
||||
requests @ file:///home/conda/feedstock_root/build_artifacts/requests_1682535435083/work
|
||||
rfc3339-validator @ file:///home/conda/feedstock_root/build_artifacts/rfc3339-validator_1638811747357/work
|
||||
rfc3986-validator @ file:///home/conda/feedstock_root/build_artifacts/rfc3986-validator_1598024191506/work
|
||||
ruamel.yaml @ file:///Users/runner/miniforge3/conda-bld/ruamel.yaml_1683014079572/work
|
||||
ruamel.yaml.clib @ file:///Users/runner/miniforge3/conda-bld/ruamel.yaml.clib_1670412840634/work
|
||||
schemdraw==0.17
|
||||
scikit-learn==1.2.2
|
||||
scipy @ file:///Users/runner/miniforge3/conda-bld/scipy_1681801875780/work/dist/scipy-1.10.1-cp38-cp38-macosx_10_9_x86_64.whl#sha256=ddc8a421d0a8bbc4931bfe48c934cd91bf1075b1f1aa1fa92c18b2e8ffa7e142
|
||||
seaborn==0.12.2
|
||||
Send2Trash @ file:///Users/runner/miniforge3/conda-bld/send2trash_1682601407921/work
|
||||
six @ file:///home/conda/feedstock_root/build_artifacts/six_1620240208055/work
|
||||
sniffio @ file:///home/conda/feedstock_root/build_artifacts/sniffio_1662051266223/work
|
||||
soupsieve @ file:///home/conda/feedstock_root/build_artifacts/soupsieve_1658207591808/work
|
||||
SQLAlchemy==1.4.48
|
||||
stack-data @ file:///home/conda/feedstock_root/build_artifacts/stack_data_1669632077133/work
|
||||
terminado @ file:///Users/runner/miniforge3/conda-bld/terminado_1670254106711/work
|
||||
threadpoolctl==3.1.0
|
||||
tinycss2 @ file:///home/conda/feedstock_root/build_artifacts/tinycss2_1666100256010/work
|
||||
tomli @ file:///home/conda/feedstock_root/build_artifacts/tomli_1644342247877/work
|
||||
toolz @ file:///home/conda/feedstock_root/build_artifacts/toolz_1657485559105/work
|
||||
tornado @ file:///Users/runner/miniforge3/conda-bld/tornado_1681817788593/work
|
||||
tqdm @ file:///home/conda/feedstock_root/build_artifacts/tqdm_1677948868469/work
|
||||
traitlets @ file:///home/conda/feedstock_root/build_artifacts/traitlets_1675110562325/work
|
||||
typing_extensions @ file:///home/conda/feedstock_root/build_artifacts/typing_extensions_1678559861143/work
|
||||
tzdata @ file:///home/conda/feedstock_root/build_artifacts/python-tzdata_1680081134351/work
|
||||
unicodedata2 @ file:///Users/runner/miniforge3/conda-bld/unicodedata2_1667239984896/work
|
||||
uri-template==1.2.0
|
||||
urllib3 @ file:///home/conda/feedstock_root/build_artifacts/urllib3_1678635778344/work
|
||||
wcwidth @ file:///home/conda/feedstock_root/build_artifacts/wcwidth_1673864653149/work
|
||||
webcolors==1.13
|
||||
webencodings==0.5.1
|
||||
websocket-client @ file:///home/conda/feedstock_root/build_artifacts/websocket-client_1675567828044/work
|
||||
widgetsnbextension @ file:///home/conda/feedstock_root/build_artifacts/widgetsnbextension_1680021576815/work
|
||||
y-py @ file:///Users/runner/miniforge3/conda-bld/y-py_1677231418476/work
|
||||
ypy-websocket @ file:///home/conda/feedstock_root/build_artifacts/ypy-websocket_1670333059911/work
|
||||
ziafont==0.6
|
||||
ziamath==0.8.1
|
||||
zipp @ file:///home/conda/feedstock_root/build_artifacts/zipp_1677313463193/work
|
||||
zstandard==0.19.0
|
@ -1,77 +0,0 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "3069696b-bbe6-4fd6-ba13-2affa071d865",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Was ist das eigentliche Lernziel? \n",
|
||||
"\n",
|
||||
"- Arbeiten mit Daten\n",
|
||||
"- Daten interpretieren \n",
|
||||
" - Visuell (Karten, Graphen, Tabellen)\n",
|
||||
" - Mittels Stochastischer Analyse (Mittelwert, Median)\n",
|
||||
" - Zufallszahlen (Zum generieren von Testdaten)?\n",
|
||||
"- Googlen lernen\n",
|
||||
"- Dokumentationen Lesen\n",
|
||||
"\n",
|
||||
"# TO DO\n",
|
||||
"\n",
|
||||
"- [] Slideshow erklären\n",
|
||||
"- [] Mehr Bilder\n",
|
||||
"- [] Python einführung?\n",
|
||||
"- [] Folium als eigene Lerneinheit -> Projekt schwieriger machen?\n",
|
||||
"- [] SciPy Funktionen und/oder arbeiten mit Statistic Daten?"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"id": "313bf238-67bc-4cb4-8331-6e183427bf70",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Note: you may need to restart the kernel to use updated packages.\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"pip freeze > requirements.txt"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "3fa17fc4-29a7-4e97-9836-50e85693cec1",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.8.16"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
@ -1,19 +0,0 @@
|
||||
\section{Project Proposal - Geomapping}
|
||||
|
||||
\begin{figure}[h]
|
||||
\includegraphics[width=0.9\textwidth]{fig/geomapping.png}
|
||||
\centering
|
||||
\end{figure}
|
||||
|
||||
Geomapping involves using geographic data to create maps that illustrate how features or phenomena are related spatially. There are a number of reasons why this skill is important. One advantage of geomapping is that it can help people better understand and analyze spatial patterns. For example, geomapping can be used to show how the distribution of certain resources, such as water or vegetation, varies across a region. This can help people make more informed decisions about how to manage those resources.
|
||||
|
||||
As part of the exercise, students will learn how to create simple maps by working with data sets. For example, if you want to show how the distribution of universities in Lower Saxony looks like, this can be shown with conventional methods of data analysis, but it hides certain data that only become visible through the spatial representation. In the exercise, the universities of Lower Saxony are plotted and the students are instructed to write a short text about how they interpret data or what they see. Thereby it becomes obvious that most of the universities are located in Hannover or that there are preferred locations for universities that are concentrated in the eastern part of Lower Saxony. All in all, the ability of geomapping should help to look at data(-sets) differently. \\
|
||||
|
||||
\textbf{What will You Learn from This Python Project?}
|
||||
\begin{itemize}
|
||||
\item Create maps in Python
|
||||
\item Visualization of coordinates with different kinds of marker (dot, circle, rectangle)
|
||||
\item Customization of markers (color, symbol)
|
||||
\item Add popup information to markers
|
||||
|
||||
\end{itemize}
|
@ -1,88 +0,0 @@
|
||||
alembic==1.8.1
|
||||
anyio==3.6.2
|
||||
appnope==0.1.3
|
||||
argon2-cffi==21.3.0
|
||||
argon2-cffi-bindings==21.2.0
|
||||
asttokens==2.1.0
|
||||
attrs==22.1.0
|
||||
Babel==2.11.0
|
||||
backcall==0.2.0
|
||||
beautifulsoup4==4.11.1
|
||||
bleach==5.0.1
|
||||
branca==0.6.0
|
||||
certifi==2022.9.24
|
||||
cffi==1.15.1
|
||||
charset-normalizer==2.1.1
|
||||
debugpy==1.6.3
|
||||
decorator==5.1.1
|
||||
defusedxml==0.7.1
|
||||
entrypoints==0.4
|
||||
executing==1.2.0
|
||||
fastjsonschema==2.16.2
|
||||
folium==0.13.0
|
||||
greenlet==2.0.1
|
||||
idna==3.4
|
||||
ipykernel==6.17.1
|
||||
ipython==8.6.0
|
||||
ipython-genutils==0.2.0
|
||||
ipywidgets==8.0.2
|
||||
jedi==0.18.1
|
||||
Jinja2==3.1.2
|
||||
json5==0.9.10
|
||||
jsonschema==4.17.0
|
||||
jupyter-server==1.23.2
|
||||
jupyter_client==7.4.6
|
||||
jupyter_core==5.0.0
|
||||
jupyterlab==3.5.0
|
||||
jupyterlab-pygments==0.2.2
|
||||
jupyterlab-widgets==3.0.3
|
||||
jupyterlab_server==2.16.3
|
||||
Mako==1.2.4
|
||||
MarkupSafe==2.1.1
|
||||
matplotlib-inline==0.1.6
|
||||
mistune==2.0.4
|
||||
nbclassic==0.3.7
|
||||
nbclient==0.6.3
|
||||
nbconvert==7.2.5
|
||||
nbformat==5.7.0
|
||||
nbgrader==0.8.1
|
||||
nest-asyncio==1.5.6
|
||||
notebook==6.4.12
|
||||
notebook_shim==0.2.2
|
||||
numpy==1.23.4
|
||||
packaging==21.3
|
||||
pandocfilters==1.5.0
|
||||
parso==0.8.3
|
||||
pexpect==4.8.0
|
||||
pickleshare==0.7.5
|
||||
platformdirs==2.5.4
|
||||
prometheus-client==0.15.0
|
||||
prompt-toolkit==3.0.32
|
||||
psutil==5.9.4
|
||||
ptyprocess==0.7.0
|
||||
pure-eval==0.2.2
|
||||
pycparser==2.21
|
||||
Pygments==2.13.0
|
||||
pyparsing==3.0.9
|
||||
pyrsistent==0.19.2
|
||||
python-dateutil==2.8.2
|
||||
pytz==2022.6
|
||||
pyzmq==24.0.1
|
||||
rapidfuzz==2.13.2
|
||||
requests==2.28.1
|
||||
Send2Trash==1.8.0
|
||||
six==1.16.0
|
||||
sniffio==1.3.0
|
||||
soupsieve==2.3.2.post1
|
||||
SQLAlchemy==1.4.44
|
||||
stack-data==0.6.1
|
||||
terminado==0.17.0
|
||||
tinycss2==1.2.1
|
||||
tomli==2.0.1
|
||||
tornado==6.2
|
||||
traitlets==5.1.1
|
||||
urllib3==1.26.12
|
||||
wcwidth==0.2.5
|
||||
webencodings==0.5.1
|
||||
websocket-client==1.4.2
|
||||
widgetsnbextension==4.0.3
|
@ -1,41 +0,0 @@
|
||||
University name,Type of university,Sponsorship,Right of promotion,Founding year,Number of students,Address,lat,lon,plz,pic
|
||||
Hochschule für Bildende Künste Braunschweig,Artistic university,public,yes,1963,976,Johannes-Selenka-Platz 1,52.2577384,10.5023145,38118 Braunschweig,https://www.hbk-bs.de/fileadmin/_processed_/5/1/csm_HBK_Logo_9f3f898a2b.png
|
||||
Technische Universität Carolo-Wilhelmina zu Braunschweig,University,public,yes,1745,17709,Universitätspl. 2,52.27355,10.530097,38106 Braunschweig,https://upload.wikimedia.org/wikipedia/commons/thumb/9/9d/Siegel_TU_Braunschweig_transparent.svg/1200px-Siegel_TU_Braunschweig_transparent.svg.png
|
||||
Hochschule 21,University of Applied Sciences,privat,no,2005,1084,Harburger Str. 6,53.47765,9.70465,21614 Buxtehude,https://upload.wikimedia.org/wikipedia/commons/thumb/b/bd/Hochschule_21_logo.svg/2560px-Hochschule_21_logo.svg.png
|
||||
Technische Universität Clausthal,University,public,yes,1775,3446,Adolph-Roemer-Straße 2A,51.80484,10.33411,38678 Clausthal-Zellerfeld,https://www.presse.tu-clausthal.de/fileadmin/TU_Clausthal/images/CorporateDesign/Logo/Logo_TUC_en_RGB_gross.gif
|
||||
Hochschule Emden/Leer,University of Applied Sciences,public,no,2009,4481,Constantiapl. 4,53.36816,7.18141,26723 Emden,https://sta-hisweb.hs-emden-leer.de/QIS/images//logo_el.jpg
|
||||
PFH – Private Hochschule Göttingen,University of Applied Sciences,privat,no,1995,4226,Weender Landstraße 3-7,51.53891,9.93322,37073 Göttingen,https://goettingen-campus.de/fileadmin/_processed_/d/7/csm_logopfh_20f8eee765.jpg
|
||||
Georg-August-Universität Göttingen,University,public,yes,1737,28614,Wilhelmsplatz 1,51.53407,9.93785,37073 Göttingen,https://upload.wikimedia.org/wikipedia/commons/c/c0/Logo_Uni_G%C3%B6ttingen_2022.png
|
||||
Fachhochschule für die Wirtschaft Hannover,University of Applied Sciences,privat,no,1996,641,Freundallee 15,52.3662,9.77247,30173 Hannover,https://upload.wikimedia.org/wikipedia/commons/5/5c/Fachhochschule_f%C3%BCr_die_Wirtschaft_logo.svg
|
||||
Hochschule Hannover,University of Applied Sciences,public,no,1971,9209,Ricklinger Stadtweg 120,52.35419,9.72238,30459 Hannover,https://upload.wikimedia.org/wikipedia/commons/thumb/0/0e/HsH_Logo.svg/1200px-HsH_Logo.svg.png
|
||||
"Hochschule für Musik, Theater und Medien Hannover",Artistic university,public,yes,1897,1409,Neues Haus 1,52.37738,9.75392,30175 Hannover,https://upload.wikimedia.org/wikipedia/commons/thumb/7/78/HMTM-Logo-2010.svg/1200px-HMTM-Logo-2010.svg.png
|
||||
Leibniz-Fachhochschule,University of Applied Sciences,privat,no,1920,589,Expo Plaza 11,52.32115,9.81868,30539 Hannover,https://www.visit-hannover.com/var/storage/images/_aliases/image_full/media/01-data-neu/bilder/redaktion-hannover.de/portale/initiative-wissenschaft/leibniz-fh/leibniz-fachhochschule-logo/8135360-1-ger-DE/Leibniz-Fachhochschule-Logo.jpg
|
||||
Medizinische Hochschule Hannover (MHH),University,public,yes,1963,3778,Carl-Neuberg-Straße 1,52.38405,9.80603,30625 Hannover,https://upload.wikimedia.org/wikipedia/commons/thumb/3/3d/Medizinische_Hochschule_Hannover_logo.svg/2560px-Medizinische_Hochschule_Hannover_logo.svg.png
|
||||
Stiftung Tierärztliche Hochschule Hannover,University,public,yes,1778,2381,Bünteweg 2,52.35468,9.79773,30559 Hannover,https://upload.wikimedia.org/wikipedia/de/thumb/5/59/Tier%C3%A4rztliche_Hochschule_Hannover_logo.svg/1200px-Tier%C3%A4rztliche_Hochschule_Hannover_logo.svg.png
|
||||
Gottfried Wilhelm Leibniz Universität Hannover,University,public,yes,1831,28935,Welfengarten 1,52.38225,9.71777,30167 Hannover,https://www.uni-hannover.de/fileadmin/_processed_/1/5/csm_luh-logo-3x2_8dea6c08fc.jpg
|
||||
Fachhochschule für Interkulturelle Theologie Hermannsburg,University of Applied Sciences,privat,no,2012,91,Missionsstraße 3-5,52.708843,10.14071,29320 Südheide,https://cdn.max-e5.info/damfiles/logo/fh_hermannsburg/fh_hermannsburg/Kopfgrafik/Logo-FIT--weiss.jpg-b5f510cb468ab8840e0f2e62b703208e.jpg
|
||||
Universität Hildesheim,University,public,yes,1978,8378,Universitätspl. 1,52.13401,9.97469,31141 Hildesheim,https://www.uni-hildesheim.de/media/_processed_/d/8/csm_Bildkombo_Logo_Uni_Hildesheim-1850_8fd99cc21e.jpg
|
||||
HAWK Hochschule für angewandte Wissenschaft und Kunst Hildesheim,University of Applied Sciences,public,no,1971,6495,Hohnsen 4,52.14246,9.95798,31134 Hildesheim,https://upload.wikimedia.org/wikipedia/commons/0/02/HAWK-Logo.jpg
|
||||
HAWK Hochschule für angewandte Wissenschaft und Kunst Holzminden,University of Applied Sciences,public,no,1971,6495,Haarmannpl. 3,51.82726,9.45069,37603 Holzminden,https://upload.wikimedia.org/wikipedia/commons/0/02/HAWK-Logo.jpg
|
||||
HAWK Hochschule für angewandte Wissenschaft und Kunst Göttingen,University of Applied Sciences,public,no,1971,6495,Von-Ossietzky-Straße 99,51.52175,9.96967,37085 Göttingen,https://upload.wikimedia.org/wikipedia/commons/0/02/HAWK-Logo.jpg
|
||||
Leuphana Universität Lüneburg,University,public,yes,1946,6497,Universitätsallee 1,53.228531,10.40171,21335 Lüneburg,https://upload.wikimedia.org/wikipedia/commons/thumb/9/93/Leuphana_Universit%C3%A4t_L%C3%BCneburg_Logo_2020.svg/2560px-Leuphana_Universit%C3%A4t_L%C3%BCneburg_Logo_2020.svg.png
|
||||
Norddeutsche Hochschule für Rechtspflege – Niedersachsen,University of Administration,public,no,2007,6409,Godehardspl. 6,52.14484,9.94923,31134 Hildesheim,https://static.studycheck.de/media/images/institute_logos/small/hr-nord.jpg
|
||||
Kommunale Hochschule für Verwaltung in Niedersachsen,University of Administration,public,no,2007,1570,Wielandstraße 8,52.3705,9.72239,30169 Hannover,https://www.nsi-hsvn.de/fileadmin/user_upload/02_Studium/big-hsvn_logo.png
|
||||
"Carl von Ossietzky Universität Oldenburg
|
||||
",University,public,yes,1973,15635,Uhlhornsweg 49-55,53.14734,8.17902,26129 Oldenburg,https://upload.wikimedia.org/wikipedia/commons/thumb/2/22/Carl_von_Ossietzky_Universit%C3%A4t_Oldenburg_logo.svg/1200px-Carl_von_Ossietzky_Universit%C3%A4t_Oldenburg_logo.svg.png
|
||||
Hochschule Osnabrück,University of Applied Sciences,public,no,1971,13620,Albrechtstraße 30,52.28268,8.02501,49076 Osnabrück,https://login.hs-osnabrueck.de/nidp/hsos/images/hsos-logo.png
|
||||
Universität Osnabrück,University,public,yes,1973,13640,Neuer Graben 29,52.27137,8.04454,49074 Osnabrück,https://www.eh-tabor.de/sites/default/files/styles/width980px/public/logo-universitaet-osnabrueck.png?itok=DmZEq9ka
|
||||
"Hochschule Braunschweig/Wolfenbüttel, Ostfalia Hochschule für angewandte Wissenschaften",University of Applied Sciences,public,no,1971,11577,Salzdahlumer Str. 46/48,52.17683,10.54865,38302 Wolfenbüttel,https://www.ostfalia.de/export/system/modules/de.ostfalia.module.template/resources/images/logo/Ostfalia_German.png_230952558.png
|
||||
"Hochschule Wolfsburg, Ostfalia Hochschule für angewandte Wissenschaften",University of Applied Sciences,public,no,1971,11577,Robert-Koch-Platz 8A,52.42595,10.78711,38440 Wolfsburg,https://www.ostfalia.de/export/system/modules/de.ostfalia.module.template/resources/images/logo/Ostfalia_German.png_230952558.png
|
||||
"Hochschule Suderburg, Ostfalia Hochschule für angewandte Wissenschaften",University of Applied Sciences,public,no,1971,11577,Herbert-Meyer-Straße 7,52.89761,10.44659,29556 Suderburg,https://www.ostfalia.de/export/system/modules/de.ostfalia.module.template/resources/images/logo/Ostfalia_German.png_230952558.png
|
||||
"Hochschule Salzgitter, Ostfalia Hochschule für angewandte Wissenschaften",University of Applied Sciences,public,no,1971,11577,Karl-Scharfenberg-Straße 55/57,52.08724,10.38055,38229 Salzgitter,https://www.ostfalia.de/export/system/modules/de.ostfalia.module.template/resources/images/logo/Ostfalia_German.png_230952558.png
|
||||
"Hochschule für Künste im Sozialen, Ottersberg",University of Applied Sciences,privat,no,1967,342,Große Str. 107,53.10668,9.1631,28870 Ottersberg,https://upload.wikimedia.org/wikipedia/commons/thumb/e/eb/Logo_HKS_Ottersberg.svg/1200px-Logo_HKS_Ottersberg.svg.png
|
||||
Private Hochschule für Wirtschaft und Technik Vechta,University of Applied Sciences,privat,no,1998,558,Rombergstraße 40,52.72125,8.27891,49377 Vechta,https://www.phwt.de/wp-content/uploads/2020/09/phwt-logo-free.png
|
||||
Private Hochschule für Wirtschaft und Technik Diepholz,University of Applied Sciences,privat,no,1998,558,Schlesier Str. 13A,52.61171,8.36334,49356 Diepholz,https://www.phwt.de/wp-content/uploads/2020/09/phwt-logo-free.png
|
||||
Universität Vechta,University,public,yes,1995,4.551,Driverstraße 22,52.72117,8.2938,49377 Vechta,https://upload.wikimedia.org/wikipedia/commons/0/08/Logo_Uni_Vechta-neu.png
|
||||
Hochschule Weserbergland,University of Applied Sciences,privat,no,2010,485,Am Stockhof 2,52.09875,9.35542,31785 Hameln,https://upload.wikimedia.org/wikipedia/commons/thumb/0/04/Hochschule_Weserbergland_logo.svg/1200px-Hochschule_Weserbergland_logo.svg.png
|
||||
Jade Hochschule – Wilhelmshaven,University of Applied Sciences,public,no,2009,6789,Friedrich-Paffrath-Straße 101,53.54787,8.08804,26389 Wilhelmshaven,https://www.jade-hs.de/fileadmin/layout2016/assets/jadehs-logo.png
|
||||
Jade Hochschule – Oldenburg,University of Applied Sciences,public,no,2009,6789,Ofener Str. 16/19,53.14179,8.20213,26121 Oldenburg,https://www.jade-hs.de/fileadmin/layout2016/assets/jadehs-logo.png
|
||||
Jade Hochschule – Elsfleth,University of Applied Sciences,public,no,2009,6789,Weserstraße 52,53.24244,8.46651,26931 Elsfleth,https://www.jade-hs.de/fileadmin/layout2016/assets/jadehs-logo.png
|
||||
Steuerakademie Niedersachsen Rinteln,University of Administration,public,no,2006,500,Wilhelm-Busch-Weg 29,52.20696,9.09112,31737 Rinteln,https://www.steuerakademie.niedersachsen.de/assets/image/232/85611
|
||||
Steuerakademie Niedersachsen Bad Eilsen,University of Administration,public,no,2006,500,Bahnhofstraße 5,52.23981,9.10423,31707 Bad Eilsen,https://www.steuerakademie.niedersachsen.de/assets/image/232/85611
|
|
Before Width: | Height: | Size: 374 KiB |
@ -1,888 +0,0 @@
|
||||
Survived,Pclass,Name,Sex,Age,Siblings/Spouses Aboard,Parents/Children Aboard,Fare
|
||||
0,3,Mr. Owen Harris Braund,male,22,1,0,7.25
|
||||
1,1,Mrs. John Bradley (Florence Briggs Thayer) Cumings,female,38,1,0,71.2833
|
||||
1,3,Miss. Laina Heikkinen,female,26,0,0,7.925
|
||||
1,1,Mrs. Jacques Heath (Lily May Peel) Futrelle,female,35,1,0,53.1
|
||||
0,3,Mr. William Henry Allen,male,35,0,0,8.05
|
||||
0,3,Mr. James Moran,male,27,0,0,8.4583
|
||||
0,1,Mr. Timothy J McCarthy,male,54,0,0,51.8625
|
||||
0,3,Master. Gosta Leonard Palsson,male,2,3,1,21.075
|
||||
1,3,Mrs. Oscar W (Elisabeth Vilhelmina Berg) Johnson,female,27,0,2,11.1333
|
||||
1,2,Mrs. Nicholas (Adele Achem) Nasser,female,14,1,0,30.0708
|
||||
1,3,Miss. Marguerite Rut Sandstrom,female,4,1,1,16.7
|
||||
1,1,Miss. Elizabeth Bonnell,female,58,0,0,26.55
|
||||
0,3,Mr. William Henry Saundercock,male,20,0,0,8.05
|
||||
0,3,Mr. Anders Johan Andersson,male,39,1,5,31.275
|
||||
0,3,Miss. Hulda Amanda Adolfina Vestrom,female,14,0,0,7.8542
|
||||
1,2,Mrs. (Mary D Kingcome) Hewlett,female,55,0,0,16
|
||||
0,3,Master. Eugene Rice,male,2,4,1,29.125
|
||||
1,2,Mr. Charles Eugene Williams,male,23,0,0,13
|
||||
0,3,Mrs. Julius (Emelia Maria Vandemoortele) Vander Planke,female,31,1,0,18
|
||||
1,3,Mrs. Fatima Masselmani,female,22,0,0,7.225
|
||||
0,2,Mr. Joseph J Fynney,male,35,0,0,26
|
||||
1,2,Mr. Lawrence Beesley,male,34,0,0,13
|
||||
1,3,Miss. Anna McGowan,female,15,0,0,8.0292
|
||||
1,1,Mr. William Thompson Sloper,male,28,0,0,35.5
|
||||
0,3,Miss. Torborg Danira Palsson,female,8,3,1,21.075
|
||||
1,3,Mrs. Carl Oscar (Selma Augusta Emilia Johansson) Asplund,female,38,1,5,31.3875
|
||||
0,3,Mr. Farred Chehab Emir,male,26,0,0,7.225
|
||||
0,1,Mr. Charles Alexander Fortune,male,19,3,2,263
|
||||
1,3,Miss. Ellen O'Dwyer,female,24,0,0,7.8792
|
||||
0,3,Mr. Lalio Todoroff,male,23,0,0,7.8958
|
||||
0,1,Don. Manuel E Uruchurtu,male,40,0,0,27.7208
|
||||
1,1,Mrs. William Augustus (Marie Eugenie) Spencer,female,48,1,0,146.5208
|
||||
1,3,Miss. Mary Agatha Glynn,female,18,0,0,7.75
|
||||
0,2,Mr. Edward H Wheadon,male,66,0,0,10.5
|
||||
0,1,Mr. Edgar Joseph Meyer,male,28,1,0,82.1708
|
||||
0,1,Mr. Alexander Oskar Holverson,male,42,1,0,52
|
||||
1,3,Mr. Hanna Mamee,male,18,0,0,7.2292
|
||||
0,3,Mr. Ernest Charles Cann,male,21,0,0,8.05
|
||||
0,3,Miss. Augusta Maria Vander Planke,female,18,2,0,18
|
||||
1,3,Miss. Jamila Nicola-Yarred,female,14,1,0,11.2417
|
||||
0,3,Mrs. Johan (Johanna Persdotter Larsson) Ahlin,female,40,1,0,9.475
|
||||
0,2,Mrs. William John Robert (Dorothy Ann Wonnacott) Turpin,female,27,1,0,21
|
||||
1,2,Miss. Simonne Marie Anne Andree Laroche,female,3,1,2,41.5792
|
||||
1,3,Miss. Margaret Delia Devaney,female,19,0,0,7.8792
|
||||
0,3,Mr. William John Rogers,male,30,0,0,8.05
|
||||
0,3,Mr. Denis Lennon,male,20,1,0,15.5
|
||||
1,3,Miss. Bridget O'Driscoll,female,27,0,0,7.75
|
||||
0,3,Mr. Youssef Samaan,male,16,2,0,21.6792
|
||||
0,3,Mrs. Josef (Josefine Franchi) Arnold-Franchi,female,18,1,0,17.8
|
||||
0,3,Master. Juha Niilo Panula,male,7,4,1,39.6875
|
||||
0,3,Mr. Richard Cater Nosworthy,male,21,0,0,7.8
|
||||
1,1,Mrs. Henry Sleeper (Myna Haxtun) Harper,female,49,1,0,76.7292
|
||||
1,2,Mrs. Lizzie (Elizabeth Anne Wilkinson) Faunthorpe,female,29,1,0,26
|
||||
0,1,Mr. Engelhart Cornelius Ostby,male,65,0,1,61.9792
|
||||
1,1,Mr. Hugh Woolner,male,46,0,0,35.5
|
||||
1,2,Miss. Emily Rugg,female,21,0,0,10.5
|
||||
0,3,Mr. Mansouer Novel,male,28.5,0,0,7.2292
|
||||
1,2,Miss. Constance Mirium West,female,5,1,2,27.75
|
||||
0,3,Master. William Frederick Goodwin,male,11,5,2,46.9
|
||||
0,3,Mr. Orsen Sirayanian,male,22,0,0,7.2292
|
||||
1,1,Miss. Amelie Icard,female,38,0,0,80
|
||||
0,1,Mr. Henry Birkhardt Harris,male,45,1,0,83.475
|
||||
0,3,Master. Harald Skoog,male,4,3,2,27.9
|
||||
0,1,Mr. Albert A Stewart,male,64,0,0,27.7208
|
||||
1,3,Master. Gerios Moubarek,male,7,1,1,15.2458
|
||||
1,2,Mrs. (Elizabeth Ramell) Nye,female,29,0,0,10.5
|
||||
0,3,Mr. Ernest James Crease,male,19,0,0,8.1583
|
||||
1,3,Miss. Erna Alexandra Andersson,female,17,4,2,7.925
|
||||
0,3,Mr. Vincenz Kink,male,26,2,0,8.6625
|
||||
0,2,Mr. Stephen Curnow Jenkin,male,32,0,0,10.5
|
||||
0,3,Miss. Lillian Amy Goodwin,female,16,5,2,46.9
|
||||
0,2,Mr. Ambrose Jr Hood,male,21,0,0,73.5
|
||||
0,3,Mr. Apostolos Chronopoulos,male,26,1,0,14.4542
|
||||
1,3,Mr. Lee Bing,male,32,0,0,56.4958
|
||||
0,3,Mr. Sigurd Hansen Moen,male,25,0,0,7.65
|
||||
0,3,Mr. Ivan Staneff,male,23,0,0,7.8958
|
||||
0,3,Mr. Rahamin Haim Moutal,male,28,0,0,8.05
|
||||
1,2,Master. Alden Gates Caldwell,male,0.83,0,2,29
|
||||
1,3,Miss. Elizabeth Dowdell,female,30,0,0,12.475
|
||||
0,3,Mr. Achille Waelens,male,22,0,0,9
|
||||
1,3,Mr. Jan Baptist Sheerlinck,male,29,0,0,9.5
|
||||
1,3,Miss. Brigdet Delia McDermott,female,31,0,0,7.7875
|
||||
0,1,Mr. Francisco M Carrau,male,28,0,0,47.1
|
||||
1,2,Miss. Bertha Ilett,female,17,0,0,10.5
|
||||
1,3,Mrs. Karl Alfred (Maria Mathilda Gustafsson) Backstrom,female,33,3,0,15.85
|
||||
0,3,Mr. William Neal Ford,male,16,1,3,34.375
|
||||
0,3,Mr. Selman Francis Slocovski,male,20,0,0,8.05
|
||||
1,1,Miss. Mabel Helen Fortune,female,23,3,2,263
|
||||
0,3,Mr. Francesco Celotti,male,24,0,0,8.05
|
||||
0,3,Mr. Emil Christmann,male,29,0,0,8.05
|
||||
0,3,Mr. Paul Edvin Andreasson,male,20,0,0,7.8542
|
||||
0,1,Mr. Herbert Fuller Chaffee,male,46,1,0,61.175
|
||||
0,3,Mr. Bertram Frank Dean,male,26,1,2,20.575
|
||||
0,3,Mr. Daniel Coxon,male,59,0,0,7.25
|
||||
0,3,Mr. Charles Joseph Shorney,male,22,0,0,8.05
|
||||
0,1,Mr. George B Goldschmidt,male,71,0,0,34.6542
|
||||
1,1,Mr. William Bertram Greenfield,male,23,0,1,63.3583
|
||||
1,2,Mrs. John T (Ada Julia Bone) Doling,female,34,0,1,23
|
||||
0,2,Mr. Sinai Kantor,male,34,1,0,26
|
||||
0,3,Miss. Matilda Petranec,female,28,0,0,7.8958
|
||||
0,3,Mr. Pastcho Petroff,male,29,0,0,7.8958
|
||||
0,1,Mr. Richard Frasar White,male,21,0,1,77.2875
|
||||
0,3,Mr. Gustaf Joel Johansson,male,33,0,0,8.6542
|
||||
0,3,Mr. Anders Vilhelm Gustafsson,male,37,2,0,7.925
|
||||
0,3,Mr. Stoytcho Mionoff,male,28,0,0,7.8958
|
||||
1,3,Miss. Anna Kristine Salkjelsvik,female,21,0,0,7.65
|
||||
1,3,Mr. Albert Johan Moss,male,29,0,0,7.775
|
||||
0,3,Mr. Tido Rekic,male,38,0,0,7.8958
|
||||
1,3,Miss. Bertha Moran,female,28,1,0,24.15
|
||||
0,1,Mr. Walter Chamberlain Porter,male,47,0,0,52
|
||||
0,3,Miss. Hileni Zabour,female,14.5,1,0,14.4542
|
||||
0,3,Mr. David John Barton,male,22,0,0,8.05
|
||||
0,3,Miss. Katriina Jussila,female,20,1,0,9.825
|
||||
0,3,Miss. Malake Attalah,female,17,0,0,14.4583
|
||||
0,3,Mr. Edvard Pekoniemi,male,21,0,0,7.925
|
||||
0,3,Mr. Patrick Connors,male,70.5,0,0,7.75
|
||||
0,2,Mr. William John Robert Turpin,male,29,1,0,21
|
||||
0,1,Mr. Quigg Edmond Baxter,male,24,0,1,247.5208
|
||||
0,3,Miss. Ellis Anna Maria Andersson,female,2,4,2,31.275
|
||||
0,2,Mr. Stanley George Hickman,male,21,2,0,73.5
|
||||
0,3,Mr. Leonard Charles Moore,male,19,0,0,8.05
|
||||
0,2,Mr. Nicholas Nasser,male,32.5,1,0,30.0708
|
||||
1,2,Miss. Susan Webber,female,32.5,0,0,13
|
||||
0,1,Mr. Percival Wayland White,male,54,0,1,77.2875
|
||||
1,3,Master. Elias Nicola-Yarred,male,12,1,0,11.2417
|
||||
0,3,Mr. Martin McMahon,male,19,0,0,7.75
|
||||
1,3,Mr. Fridtjof Arne Madsen,male,24,0,0,7.1417
|
||||
1,3,Miss. Anna Peter,female,2,1,1,22.3583
|
||||
0,3,Mr. Johan Ekstrom,male,45,0,0,6.975
|
||||
0,3,Mr. Jozef Drazenoic,male,33,0,0,7.8958
|
||||
0,3,Mr. Domingos Fernandeo Coelho,male,20,0,0,7.05
|
||||
0,3,Mrs. Alexander A (Grace Charity Laury) Robins,female,47,1,0,14.5
|
||||
1,2,Mrs. Leopold (Mathilde Francoise Pede) Weisz,female,29,1,0,26
|
||||
0,2,Mr. Samuel James Hayden Sobey,male,25,0,0,13
|
||||
0,2,Mr. Emile Richard,male,23,0,0,15.0458
|
||||
1,1,Miss. Helen Monypeny Newsom,female,19,0,2,26.2833
|
||||
0,1,Mr. Jacques Heath Futrelle,male,37,1,0,53.1
|
||||
0,3,Mr. Olaf Elon Osen,male,16,0,0,9.2167
|
||||
0,1,Mr. Victor Giglio,male,24,0,0,79.2
|
||||
0,3,Mrs. Joseph (Sultana) Boulos,female,40,0,2,15.2458
|
||||
1,3,Miss. Anna Sofia Nysten,female,22,0,0,7.75
|
||||
1,3,Mrs. Pekka Pietari (Elin Matilda Dolck) Hakkarainen,female,24,1,0,15.85
|
||||
0,3,Mr. Jeremiah Burke,male,19,0,0,6.75
|
||||
0,2,Mr. Edgardo Samuel Andrew,male,18,0,0,11.5
|
||||
0,2,Mr. Joseph Charles Nicholls,male,19,1,1,36.75
|
||||
1,3,Mr. August Edvard Andersson,male,27,0,0,7.7958
|
||||
0,3,Miss. Robina Maggie Ford,female,9,2,2,34.375
|
||||
0,2,Mr. Michel Navratil,male,36.5,0,2,26
|
||||
0,2,Rev. Thomas Roussel Davids Byles,male,42,0,0,13
|
||||
0,2,Rev. Robert James Bateman,male,51,0,0,12.525
|
||||
1,1,Mrs. Thomas (Edith Wearne) Pears,female,22,1,0,66.6
|
||||
0,3,Mr. Alfonzo Meo,male,55.5,0,0,8.05
|
||||
0,3,Mr. Austin Blyler van Billiard,male,40.5,0,2,14.5
|
||||
0,3,Mr. Ole Martin Olsen,male,27,0,0,7.3125
|
||||
0,1,Mr. Charles Duane Williams,male,51,0,1,61.3792
|
||||
1,3,Miss. Katherine Gilnagh,female,16,0,0,7.7333
|
||||
0,3,Mr. Harry Corn,male,30,0,0,8.05
|
||||
0,3,Mr. Mile Smiljanic,male,37,0,0,8.6625
|
||||
0,3,Master. Thomas Henry Sage,male,5,8,2,69.55
|
||||
0,3,Mr. John Hatfield Cribb,male,44,0,1,16.1
|
||||
1,2,Mrs. James (Elizabeth Inglis Milne) Watt,female,40,0,0,15.75
|
||||
0,3,Mr. John Viktor Bengtsson,male,26,0,0,7.775
|
||||
0,3,Mr. Jovo Calic,male,17,0,0,8.6625
|
||||
0,3,Master. Eino Viljami Panula,male,1,4,1,39.6875
|
||||
1,3,Master. Frank John William Goldsmith,male,9,0,2,20.525
|
||||
1,1,Mrs. (Edith Martha Bowerman) Chibnall,female,48,0,1,55
|
||||
0,3,Mrs. William (Anna Bernhardina Karlsson) Skoog,female,45,1,4,27.9
|
||||
0,1,Mr. John D Baumann,male,60,0,0,25.925
|
||||
0,3,Mr. Lee Ling,male,28,0,0,56.4958
|
||||
0,1,Mr. Wyckoff Van der hoef,male,61,0,0,33.5
|
||||
0,3,Master. Arthur Rice,male,4,4,1,29.125
|
||||
1,3,Miss. Eleanor Ileen Johnson,female,1,1,1,11.1333
|
||||
0,3,Mr. Antti Wilhelm Sivola,male,21,0,0,7.925
|
||||
0,1,Mr. James Clinch Smith,male,56,0,0,30.6958
|
||||
0,3,Mr. Klas Albin Klasen,male,18,1,1,7.8542
|
||||
0,3,Master. Henry Forbes Lefebre,male,5,3,1,25.4667
|
||||
0,1,Miss. Ann Elizabeth Isham,female,50,0,0,28.7125
|
||||
0,2,Mr. Reginald Hale,male,30,0,0,13
|
||||
0,3,Mr. Lionel Leonard,male,36,0,0,0
|
||||
0,3,Miss. Constance Gladys Sage,female,8,8,2,69.55
|
||||
0,2,Mr. Rene Pernot,male,39,0,0,15.05
|
||||
0,3,Master. Clarence Gustaf Hugo Asplund,male,9,4,2,31.3875
|
||||
1,2,Master. Richard F Becker,male,1,2,1,39
|
||||
1,3,Miss. Luise Gretchen Kink-Heilmann,female,4,0,2,22.025
|
||||
0,1,Mr. Hugh Roscoe Rood,male,39,0,0,50
|
||||
1,3,Mrs. Thomas (Johanna Godfrey) O'Brien,female,26,1,0,15.5
|
||||
1,1,Mr. Charles Hallace Romaine,male,45,0,0,26.55
|
||||
0,3,Mr. John Bourke,male,40,1,1,15.5
|
||||
0,3,Mr. Stjepan Turcin,male,36,0,0,7.8958
|
||||
1,2,Mrs. (Rosa) Pinsky,female,32,0,0,13
|
||||
0,2,Mr. William Carbines,male,19,0,0,13
|
||||
1,3,Miss. Carla Christine Nielsine Andersen-Jensen,female,19,1,0,7.8542
|
||||
1,2,Master. Michel M Navratil,male,3,1,1,26
|
||||
1,1,Mrs. James Joseph (Margaret Tobin) Brown,female,44,0,0,27.7208
|
||||
1,1,Miss. Elise Lurette,female,58,0,0,146.5208
|
||||
0,3,Mr. Robert Mernagh,male,28,0,0,7.75
|
||||
0,3,Mr. Karl Siegwart Andreas Olsen,male,42,0,1,8.4042
|
||||
1,3,Miss. Margaret Madigan,female,21,0,0,7.75
|
||||
0,2,Miss. Henriette Yrois,female,24,0,0,13
|
||||
0,3,Mr. Nestor Cyriel Vande Walle,male,28,0,0,9.5
|
||||
0,3,Mr. Frederick Sage,male,17,8,2,69.55
|
||||
0,3,Mr. Jakob Alfred Johanson,male,34,0,0,6.4958
|
||||
0,3,Mr. Gerious Youseff,male,45.5,0,0,7.225
|
||||
1,3,Mr. Gurshon Cohen,male,18,0,0,8.05
|
||||
0,3,Miss. Telma Matilda Strom,female,2,0,1,10.4625
|
||||
0,3,Mr. Karl Alfred Backstrom,male,32,1,0,15.85
|
||||
1,3,Mr. Nassef Cassem Albimona,male,26,0,0,18.7875
|
||||
1,3,Miss. Helen Carr,female,16,0,0,7.75
|
||||
1,1,Mr. Henry Blank,male,40,0,0,31
|
||||
0,3,Mr. Ahmed Ali,male,24,0,0,7.05
|
||||
1,2,Miss. Clear Annie Cameron,female,35,0,0,21
|
||||
0,3,Mr. John Henry Perkin,male,22,0,0,7.25
|
||||
0,2,Mr. Hans Kristensen Givard,male,30,0,0,13
|
||||
0,3,Mr. Philip Kiernan,male,22,1,0,7.75
|
||||
1,1,Miss. Madeleine Newell,female,31,1,0,113.275
|
||||
1,3,Miss. Eliina Honkanen,female,27,0,0,7.925
|
||||
0,2,Mr. Sidney Samuel Jacobsohn,male,42,1,0,27
|
||||
1,1,Miss. Albina Bazzani,female,32,0,0,76.2917
|
||||
0,2,Mr. Walter Harris,male,30,0,0,10.5
|
||||
1,3,Mr. Victor Francis Sunderland,male,16,0,0,8.05
|
||||
0,2,Mr. James H Bracken,male,27,0,0,13
|
||||
0,3,Mr. George Henry Green,male,51,0,0,8.05
|
||||
0,3,Mr. Christo Nenkoff,male,22,0,0,7.8958
|
||||
1,1,Mr. Frederick Maxfield Hoyt,male,38,1,0,90
|
||||
0,3,Mr. Karl Ivar Sven Berglund,male,22,0,0,9.35
|
||||
1,2,Mr. William John Mellors,male,19,0,0,10.5
|
||||
0,3,Mr. John Hall Lovell,male,20.5,0,0,7.25
|
||||
0,2,Mr. Arne Jonas Fahlstrom,male,18,0,0,13
|
||||
0,3,Miss. Mathilde Lefebre,female,12,3,1,25.4667
|
||||
1,1,Mrs. Henry Birkhardt (Irene Wallach) Harris,female,35,1,0,83.475
|
||||
0,3,Mr. Bengt Edvin Larsson,male,29,0,0,7.775
|
||||
0,2,Mr. Ernst Adolf Sjostedt,male,59,0,0,13.5
|
||||
1,3,Miss. Lillian Gertrud Asplund,female,5,4,2,31.3875
|
||||
0,2,Mr. Robert William Norman Leyson,male,24,0,0,10.5
|
||||
0,3,Miss. Alice Phoebe Harknett,female,21,0,0,7.55
|
||||
0,2,Mr. Stephen Hold,male,44,1,0,26
|
||||
1,2,Miss. Marjorie Collyer,female,8,0,2,26.25
|
||||
0,2,Mr. Frederick William Pengelly,male,19,0,0,10.5
|
||||
0,2,Mr. George Henry Hunt,male,33,0,0,12.275
|
||||
0,3,Miss. Thamine Zabour,female,19,1,0,14.4542
|
||||
1,3,Miss. Katherine Murphy,female,18,1,0,15.5
|
||||
0,2,Mr. Reginald Charles Coleridge,male,29,0,0,10.5
|
||||
0,3,Mr. Matti Alexanteri Maenpaa,male,22,0,0,7.125
|
||||
0,3,Mr. Sleiman Attalah,male,30,0,0,7.225
|
||||
0,1,Dr. William Edward Minahan,male,44,2,0,90
|
||||
0,3,Miss. Agda Thorilda Viktoria Lindahl,female,25,0,0,7.775
|
||||
1,2,Mrs. William (Anna) Hamalainen,female,24,0,2,14.5
|
||||
1,1,Mr. Richard Leonard Beckwith,male,37,1,1,52.5542
|
||||
0,2,Rev. Ernest Courtenay Carter,male,54,1,0,26
|
||||
0,3,Mr. James George Reed,male,18,0,0,7.25
|
||||
0,3,Mrs. Wilhelm (Elna Matilda Persson) Strom,female,29,1,1,10.4625
|
||||
0,1,Mr. William Thomas Stead,male,62,0,0,26.55
|
||||
0,3,Mr. William Arthur Lobb,male,30,1,0,16.1
|
||||
0,3,Mrs. Viktor (Helena Wilhelmina) Rosblom,female,41,0,2,20.2125
|
||||
1,3,Mrs. Darwis (Hanne Youssef Razi) Touma,female,29,0,2,15.2458
|
||||
1,1,Mrs. Gertrude Maybelle Thorne,female,38,0,0,79.2
|
||||
1,1,Miss. Gladys Cherry,female,30,0,0,86.5
|
||||
1,1,Miss. Anna Ward,female,35,0,0,512.3292
|
||||
1,2,Mrs. (Lutie Davis) Parrish,female,50,0,1,26
|
||||
1,3,Master. Edvin Rojj Felix Asplund,male,3,4,2,31.3875
|
||||
0,1,Mr. Emil Taussig,male,52,1,1,79.65
|
||||
0,1,Mr. William Harrison,male,40,0,0,0
|
||||
0,3,Miss. Delia Henry,female,21,0,0,7.75
|
||||
0,2,Mr. David Reeves,male,36,0,0,10.5
|
||||
0,3,Mr. Ernesti Arvid Panula,male,16,4,1,39.6875
|
||||
1,3,Mr. Ernst Ulrik Persson,male,25,1,0,7.775
|
||||
1,1,Mrs. William Thompson (Edith Junkins) Graham,female,58,0,1,153.4625
|
||||
1,1,Miss. Amelia Bissette,female,35,0,0,135.6333
|
||||
0,1,Mr. Alexander Cairns,male,28,0,0,31
|
||||
1,3,Mr. William Henry Tornquist,male,25,0,0,0
|
||||
1,2,Mrs. (Elizabeth Anne Maidment) Mellinger,female,41,0,1,19.5
|
||||
0,1,Mr. Charles H Natsch,male,37,0,1,29.7
|
||||
1,3,Miss. Hanora Healy,female,33,0,0,7.75
|
||||
1,1,Miss. Kornelia Theodosia Andrews,female,63,1,0,77.9583
|
||||
0,3,Miss. Augusta Charlotta Lindblom,female,45,0,0,7.75
|
||||
0,2,Mr. Francis Parkes,male,21,0,0,0
|
||||
0,3,Master. Eric Rice,male,7,4,1,29.125
|
||||
1,3,Mrs. Stanton (Rosa Hunt) Abbott,female,35,1,1,20.25
|
||||
0,3,Mr. Frank Duane,male,65,0,0,7.75
|
||||
0,3,Mr. Nils Johan Goransson Olsson,male,28,0,0,7.8542
|
||||
0,3,Mr. Alfons de Pelsmaeker,male,16,0,0,9.5
|
||||
1,3,Mr. Edward Arthur Dorking,male,19,0,0,8.05
|
||||
0,1,Mr. Richard William Smith,male,57,0,0,26
|
||||
0,3,Mr. Ivan Stankovic,male,33,0,0,8.6625
|
||||
1,3,Mr. Theodore de Mulder,male,30,0,0,9.5
|
||||
0,3,Mr. Penko Naidenoff,male,22,0,0,7.8958
|
||||
1,2,Mr. Masabumi Hosono,male,42,0,0,13
|
||||
1,3,Miss. Kate Connolly,female,22,0,0,7.75
|
||||
1,1,Miss. Ellen Barber,female,26,0,0,78.85
|
||||
1,1,Mrs. Dickinson H (Helen Walton) Bishop,female,19,1,0,91.0792
|
||||
0,2,Mr. Rene Jacques Levy,male,36,0,0,12.875
|
||||
0,3,Miss. Aloisia Haas,female,24,0,0,8.85
|
||||
0,3,Mr. Ivan Mineff,male,24,0,0,7.8958
|
||||
0,1,Mr. Ervin G Lewy,male,30,0,0,27.7208
|
||||
0,3,Mr. Mansour Hanna,male,23.5,0,0,7.2292
|
||||
0,1,Miss. Helen Loraine Allison,female,2,1,2,151.55
|
||||
1,1,Mr. Adolphe Saalfeld,male,47,0,0,30.5
|
||||
1,1,Mrs. James (Helene DeLaudeniere Chaput) Baxter,female,50,0,1,247.5208
|
||||
1,3,Miss. Anna Katherine Kelly,female,20,0,0,7.75
|
||||
1,3,Mr. Bernard McCoy,male,24,2,0,23.25
|
||||
0,3,Mr. William Cahoone Jr Johnson,male,19,0,0,0
|
||||
1,2,Miss. Nora A Keane,female,46,0,0,12.35
|
||||
0,3,Mr. Howard Hugh Williams,male,28,0,0,8.05
|
||||
1,1,Master. Hudson Trevor Allison,male,0.92,1,2,151.55
|
||||
1,1,Miss. Margaret Fleming,female,42,0,0,110.8833
|
||||
1,1,Mrs. Victor de Satode (Maria Josefa Perez de Soto y Vallejo) Penasco y Castellana,female,17,1,0,108.9
|
||||
0,2,Mr. Samuel Abelson,male,30,1,0,24
|
||||
1,1,Miss. Laura Mabel Francatelli,female,30,0,0,56.9292
|
||||
1,1,Miss. Margaret Bechstein Hays,female,24,0,0,83.1583
|
||||
1,1,Miss. Emily Borie Ryerson,female,18,2,2,262.375
|
||||
0,2,Mrs. William (Anna Sylfven) Lahtinen,female,26,1,1,26
|
||||
0,3,Mr. Ignjac Hendekovic,male,28,0,0,7.8958
|
||||
0,2,Mr. Benjamin Hart,male,43,1,1,26.25
|
||||
1,3,Miss. Helmina Josefina Nilsson,female,26,0,0,7.8542
|
||||
1,2,Mrs. Sinai (Miriam Sternin) Kantor,female,24,1,0,26
|
||||
0,2,Dr. Ernest Moraweck,male,54,0,0,14
|
||||
1,1,Miss. Mary Natalie Wick,female,31,0,2,164.8667
|
||||
1,1,Mrs. Frederic Oakley (Margaretta Corning Stone) Spedden,female,40,1,1,134.5
|
||||
0,3,Mr. Samuel Dennis,male,22,0,0,7.25
|
||||
0,3,Mr. Yoto Danoff,male,27,0,0,7.8958
|
||||
1,2,Miss. Hilda Mary Slayter,female,30,0,0,12.35
|
||||
1,2,Mrs. Albert Francis (Sylvia Mae Harbaugh) Caldwell,female,22,1,1,29
|
||||
0,3,Mr. George John Jr Sage,male,20,8,2,69.55
|
||||
1,1,Miss. Marie Grice Young,female,36,0,0,135.6333
|
||||
0,3,Mr. Johan Hansen Nysveen,male,61,0,0,6.2375
|
||||
1,2,Mrs. (Ada E Hall) Ball,female,36,0,0,13
|
||||
1,3,Mrs. Frank John (Emily Alice Brown) Goldsmith,female,31,1,1,20.525
|
||||
1,1,Miss. Jean Gertrude Hippach,female,16,0,1,57.9792
|
||||
1,3,Miss. Agnes McCoy,female,28,2,0,23.25
|
||||
0,1,Mr. Austen Partner,male,45.5,0,0,28.5
|
||||
0,1,Mr. George Edward Graham,male,38,0,1,153.4625
|
||||
0,3,Mr. Leo Edmondus Vander Planke,male,16,2,0,18
|
||||
1,1,Mrs. Henry William (Clara Heinsheimer) Frauenthal,female,42,1,0,133.65
|
||||
0,3,Mr. Mitto Denkoff,male,30,0,0,7.8958
|
||||
0,1,Mr. Thomas Clinton Pears,male,29,1,0,66.6
|
||||
1,1,Miss. Elizabeth Margaret Burns,female,41,0,0,134.5
|
||||
1,3,Mr. Karl Edwart Dahl,male,45,0,0,8.05
|
||||
0,1,Mr. Stephen Weart Blackwell,male,45,0,0,35.5
|
||||
1,2,Master. Edmond Roger Navratil,male,2,1,1,26
|
||||
1,1,Miss. Alice Elizabeth Fortune,female,24,3,2,263
|
||||
0,2,Mr. Erik Gustaf Collander,male,28,0,0,13
|
||||
0,2,Mr. Charles Frederick Waddington Sedgwick,male,25,0,0,13
|
||||
0,2,Mr. Stanley Hubert Fox,male,36,0,0,13
|
||||
1,2,Miss. Amelia Brown,female,24,0,0,13
|
||||
1,2,Miss. Marion Elsie Smith,female,40,0,0,13
|
||||
1,3,Mrs. Thomas Henry (Mary E Finck) Davison,female,34,1,0,16.1
|
||||
1,3,Master. William Loch Coutts,male,3,1,1,15.9
|
||||
0,3,Mr. Jovan Dimic,male,42,0,0,8.6625
|
||||
0,3,Mr. Nils Martin Odahl,male,23,0,0,9.225
|
||||
0,1,Mr. Fletcher Fellows Williams-Lambert,male,43,0,0,35
|
||||
0,3,Mr. Tannous Elias,male,15,1,1,7.2292
|
||||
0,3,Mr. Josef Arnold-Franchi,male,25,1,0,17.8
|
||||
0,3,Mr. Wazli Yousif,male,23,0,0,7.225
|
||||
0,3,Mr. Leo Peter Vanden Steen,male,28,0,0,9.5
|
||||
1,1,Miss. Elsie Edith Bowerman,female,22,0,1,55
|
||||
0,2,Miss. Annie Clemmer Funk,female,38,0,0,13
|
||||
1,3,Miss. Mary McGovern,female,22,0,0,7.8792
|
||||
1,3,Miss. Helen Mary Mockler,female,23,0,0,7.8792
|
||||
0,3,Mr. Wilhelm Skoog,male,40,1,4,27.9
|
||||
0,2,Mr. Sebastiano del Carlo,male,29,1,0,27.7208
|
||||
0,3,Mrs. (Catherine David) Barbara,female,45,0,1,14.4542
|
||||
0,3,Mr. Adola Asim,male,35,0,0,7.05
|
||||
0,3,Mr. Thomas O'Brien,male,27,1,0,15.5
|
||||
0,3,Mr. Mauritz Nils Martin Adahl,male,30,0,0,7.25
|
||||
1,1,Mrs. Frank Manley (Anna Sophia Atkinson) Warren,female,60,1,0,75.25
|
||||
1,3,Mrs. (Mantoura Boulos) Moussa,female,35,0,0,7.2292
|
||||
1,3,Miss. Annie Jermyn,female,22,0,0,7.75
|
||||
1,1,Mme. Leontine Pauline Aubart,female,24,0,0,69.3
|
||||
1,1,Mr. George Achilles Harder,male,25,1,0,55.4417
|
||||
0,3,Mr. Jakob Alfred Wiklund,male,18,1,0,6.4958
|
||||
0,3,Mr. William Thomas Beavan,male,19,0,0,8.05
|
||||
0,1,Mr. Sante Ringhini,male,22,0,0,135.6333
|
||||
0,3,Miss. Stina Viola Palsson,female,3,3,1,21.075
|
||||
1,1,Mrs. Edgar Joseph (Leila Saks) Meyer,female,25,1,0,82.1708
|
||||
1,3,Miss. Aurora Adelia Landergren,female,22,0,0,7.25
|
||||
0,1,Mr. Harry Elkins Widener,male,27,0,2,211.5
|
||||
0,3,Mr. Tannous Betros,male,20,0,0,4.0125
|
||||
0,3,Mr. Karl Gideon Gustafsson,male,19,0,0,7.775
|
||||
1,1,Miss. Rosalie Bidois,female,42,0,0,227.525
|
||||
1,3,Miss. Maria Nakid,female,1,0,2,15.7417
|
||||
0,3,Mr. Juho Tikkanen,male,32,0,0,7.925
|
||||
1,1,Mrs. Alexander Oskar (Mary Aline Towner) Holverson,female,35,1,0,52
|
||||
0,3,Mr. Vasil Plotcharsky,male,27,0,0,7.8958
|
||||
0,2,Mr. Charles Henry Davies,male,18,0,0,73.5
|
||||
0,3,Master. Sidney Leonard Goodwin,male,1,5,2,46.9
|
||||
1,2,Miss. Kate Buss,female,36,0,0,13
|
||||
0,3,Mr. Matthew Sadlier,male,19,0,0,7.7292
|
||||
1,2,Miss. Bertha Lehmann,female,17,0,0,12
|
||||
1,1,Mr. William Ernest Carter,male,36,1,2,120
|
||||
1,3,Mr. Carl Olof Jansson,male,21,0,0,7.7958
|
||||
0,3,Mr. Johan Birger Gustafsson,male,28,2,0,7.925
|
||||
1,1,Miss. Marjorie Newell,female,23,1,0,113.275
|
||||
1,3,Mrs. Hjalmar (Agnes Charlotta Bengtsson) Sandstrom,female,24,0,2,16.7
|
||||
0,3,Mr. Erik Johansson,male,22,0,0,7.7958
|
||||
0,3,Miss. Elina Olsson,female,31,0,0,7.8542
|
||||
0,2,Mr. Peter David McKane,male,46,0,0,26
|
||||
0,2,Dr. Alfred Pain,male,23,0,0,10.5
|
||||
1,2,Mrs. William H (Jessie L) Trout,female,28,0,0,12.65
|
||||
1,3,Mr. Juha Niskanen,male,39,0,0,7.925
|
||||
0,3,Mr. John Adams,male,26,0,0,8.05
|
||||
0,3,Miss. Mari Aina Jussila,female,21,1,0,9.825
|
||||
0,3,Mr. Pekka Pietari Hakkarainen,male,28,1,0,15.85
|
||||
0,3,Miss. Marija Oreskovic,female,20,0,0,8.6625
|
||||
0,2,Mr. Shadrach Gale,male,34,1,0,21
|
||||
0,3,Mr. Carl/Charles Peter Widegren,male,51,0,0,7.75
|
||||
1,2,Master. William Rowe Richards,male,3,1,1,18.75
|
||||
0,3,Mr. Hans Martin Monsen Birkeland,male,21,0,0,7.775
|
||||
0,3,Miss. Ida Lefebre,female,3,3,1,25.4667
|
||||
0,3,Mr. Todor Sdycoff,male,42,0,0,7.8958
|
||||
0,3,Mr. Henry Hart,male,27,0,0,6.8583
|
||||
1,1,Miss. Daisy E Minahan,female,33,1,0,90
|
||||
0,2,Mr. Alfred Fleming Cunningham,male,22,0,0,0
|
||||
1,3,Mr. Johan Julian Sundman,male,44,0,0,7.925
|
||||
0,3,Mrs. Thomas (Annie Louise Rowley) Meek,female,32,0,0,8.05
|
||||
1,2,Mrs. James Vivian (Lulu Thorne Christian) Drew,female,34,1,1,32.5
|
||||
1,2,Miss. Lyyli Karoliina Silven,female,18,0,2,13
|
||||
0,2,Mr. William John Matthews,male,30,0,0,13
|
||||
0,3,Miss. Catharina Van Impe,female,10,0,2,24.15
|
||||
0,3,Mr. David Charters,male,21,0,0,7.7333
|
||||
0,3,Mr. Leo Zimmerman,male,29,0,0,7.875
|
||||
0,3,Mrs. Ernst Gilbert (Anna Sigrid Maria Brogren) Danbom,female,28,1,1,14.4
|
||||
0,3,Mr. Viktor Richard Rosblom,male,18,1,1,20.2125
|
||||
0,3,Mr. Phillippe Wiseman,male,54,0,0,7.25
|
||||
1,2,Mrs. Charles V (Ada Maria Winfield) Clarke,female,28,1,0,26
|
||||
1,2,Miss. Kate Florence Phillips,female,19,0,0,26
|
||||
0,3,Mr. James Flynn,male,28,0,0,7.75
|
||||
1,3,Mr. Berk (Berk Trembisky) Pickard,male,32,0,0,8.05
|
||||
1,1,Mr. Mauritz Hakan Bjornstrom-Steffansson,male,28,0,0,26.55
|
||||
1,3,Mrs. Percival (Florence Kate White) Thorneycroft,female,33,1,0,16.1
|
||||
1,2,Mrs. Charles Alexander (Alice Adelaide Slow) Louch,female,42,1,0,26
|
||||
0,3,Mr. Nikolai Erland Kallio,male,17,0,0,7.125
|
||||
0,1,Mr. William Baird Silvey,male,50,1,0,55.9
|
||||
1,1,Miss. Lucile Polk Carter,female,14,1,2,120
|
||||
0,3,Miss. Doolina Margaret Ford,female,21,2,2,34.375
|
||||
1,2,Mrs. Sidney (Emily Hocking) Richards,female,24,2,3,18.75
|
||||
0,1,Mr. Mark Fortune,male,64,1,4,263
|
||||
0,2,Mr. Johan Henrik Johannesson Kvillner,male,31,0,0,10.5
|
||||
1,2,Mrs. Benjamin (Esther Ada Bloomfield) Hart,female,45,1,1,26.25
|
||||
0,3,Mr. Leon Hampe,male,20,0,0,9.5
|
||||
0,3,Mr. Johan Emil Petterson,male,25,1,0,7.775
|
||||
1,2,Ms. Encarnacion Reynaldo,female,28,0,0,13
|
||||
1,3,Mr. Bernt Johannesen-Bratthammer,male,29,0,0,8.1125
|
||||
1,1,Master. Washington Dodge,male,4,0,2,81.8583
|
||||
1,2,Miss. Madeleine Violet Mellinger,female,13,0,1,19.5
|
||||
1,1,Mr. Frederic Kimber Seward,male,34,0,0,26.55
|
||||
1,3,Miss. Marie Catherine Baclini,female,5,2,1,19.2583
|
||||
1,1,Major. Arthur Godfrey Peuchen,male,52,0,0,30.5
|
||||
0,2,Mr. Edwy Arthur West,male,36,1,2,27.75
|
||||
0,3,Mr. Ingvald Olai Olsen Hagland,male,28,1,0,19.9667
|
||||
0,1,Mr. Benjamin Laventall Foreman,male,30,0,0,27.75
|
||||
1,1,Mr. Samuel L Goldenberg,male,49,1,0,89.1042
|
||||
0,3,Mr. Joseph Peduzzi,male,24,0,0,8.05
|
||||
1,3,Mr. Ivan Jalsevac,male,29,0,0,7.8958
|
||||
0,1,Mr. Francis Davis Millet,male,65,0,0,26.55
|
||||
1,1,Mrs. Frederick R (Marion) Kenyon,female,41,1,0,51.8625
|
||||
1,2,Miss. Ellen Toomey,female,50,0,0,10.5
|
||||
0,3,Mr. Maurice O'Connor,male,17,0,0,7.75
|
||||
1,1,Mr. Harry Anderson,male,48,0,0,26.55
|
||||
0,3,Mr. William Morley,male,34,0,0,8.05
|
||||
0,1,Mr. Arthur H Gee,male,47,0,0,38.5
|
||||
0,2,Mr. Jacob Christian Milling,male,48,0,0,13
|
||||
0,3,Mr. Simon Maisner,male,34,0,0,8.05
|
||||
0,3,Mr. Manuel Estanslas Goncalves,male,38,0,0,7.05
|
||||
0,2,Mr. William Campbell,male,21,0,0,0
|
||||
0,1,Mr. John Montgomery Smart,male,56,0,0,26.55
|
||||
0,3,Mr. James Scanlan,male,22,0,0,7.725
|
||||
1,3,Miss. Helene Barbara Baclini,female,0.75,2,1,19.2583
|
||||
0,3,Mr. Arthur Keefe,male,39,0,0,7.25
|
||||
0,3,Mr. Luka Cacic,male,38,0,0,8.6625
|
||||
1,2,Mrs. Edwy Arthur (Ada Mary Worth) West,female,33,1,2,27.75
|
||||
1,2,Mrs. Amin S (Marie Marthe Thuillard) Jerwan,female,23,0,0,13.7917
|
||||
0,3,Miss. Ida Sofia Strandberg,female,22,0,0,9.8375
|
||||
0,1,Mr. George Quincy Clifford,male,40,0,0,52
|
||||
0,2,Mr. Peter Henry Renouf,male,34,1,0,21
|
||||
0,3,Mr. Lewis Richard Braund,male,29,1,0,7.0458
|
||||
0,3,Mr. Nils August Karlsson,male,22,0,0,7.5208
|
||||
1,3,Miss. Hildur E Hirvonen,female,2,0,1,12.2875
|
||||
0,3,Master. Harold Victor Goodwin,male,9,5,2,46.9
|
||||
0,2,Mr. Anthony Wood Frost,male,37,0,0,0
|
||||
0,3,Mr. Richard Henry Rouse,male,50,0,0,8.05
|
||||
1,3,Mrs. (Hedwig) Turkula,female,63,0,0,9.5875
|
||||
1,1,Mr. Dickinson H Bishop,male,25,1,0,91.0792
|
||||
0,3,Miss. Jeannie Lefebre,female,8,3,1,25.4667
|
||||
1,1,Mrs. Frederick Maxfield (Jane Anne Forby) Hoyt,female,35,1,0,90
|
||||
0,1,Mr. Edward Austin Kent,male,58,0,0,29.7
|
||||
0,3,Mr. Francis William Somerton,male,30,0,0,8.05
|
||||
1,3,Master. Eden Leslie Coutts,male,9,1,1,15.9
|
||||
0,3,Mr. Konrad Mathias Reiersen Hagland,male,19,1,0,19.9667
|
||||
0,3,Mr. Einar Windelov,male,21,0,0,7.25
|
||||
0,1,Mr. Harry Markland Molson,male,55,0,0,30.5
|
||||
0,1,Mr. Ramon Artagaveytia,male,71,0,0,49.5042
|
||||
0,3,Mr. Edward Roland Stanley,male,21,0,0,8.05
|
||||
0,3,Mr. Gerious Yousseff,male,26,0,0,14.4583
|
||||
1,1,Miss. Elizabeth Mussey Eustis,female,54,1,0,78.2667
|
||||
0,3,Mr. Frederick William Shellard,male,55,0,0,15.1
|
||||
0,1,Mrs. Hudson J C (Bessie Waldo Daniels) Allison,female,25,1,2,151.55
|
||||
0,3,Mr. Olof Svensson,male,24,0,0,7.7958
|
||||
0,3,Mr. Petar Calic,male,17,0,0,8.6625
|
||||
0,3,Miss. Mary Canavan,female,21,0,0,7.75
|
||||
0,3,Miss. Bridget Mary O'Sullivan,female,21,0,0,7.6292
|
||||
0,3,Miss. Kristina Sofia Laitinen,female,37,0,0,9.5875
|
||||
1,1,Miss. Roberta Maioni,female,16,0,0,86.5
|
||||
0,1,Mr. Victor de Satode Penasco y Castellana,male,18,1,0,108.9
|
||||
1,2,Mrs. Frederick Charles (Jane Richards) Quick,female,33,0,2,26
|
||||
1,1,Mr. George Bradley,male,37,0,0,26.55
|
||||
0,3,Mr. Henry Margido Olsen,male,28,0,0,22.525
|
||||
1,3,Mr. Fang Lang,male,26,0,0,56.4958
|
||||
1,3,Mr. Eugene Patrick Daly,male,29,0,0,7.75
|
||||
0,3,Mr. James Webber,male,66,0,0,8.05
|
||||
1,1,Mr. James Robert McGough,male,36,0,0,26.2875
|
||||
1,1,Mrs. Martin (Elizabeth L. Barrett) Rothschild,female,54,1,0,59.4
|
||||
0,3,Mr. Satio Coleff,male,24,0,0,7.4958
|
||||
0,1,Mr. William Anderson Walker,male,47,0,0,34.0208
|
||||
1,2,Mrs. (Amelia Milley) Lemore,female,34,0,0,10.5
|
||||
0,3,Mr. Patrick Ryan,male,30,0,0,24.15
|
||||
1,2,Mrs. William A (Florence Agnes Hughes) Angle,female,36,1,0,26
|
||||
0,3,Mr. Stefo Pavlovic,male,32,0,0,7.8958
|
||||
1,1,Miss. Anne Perreault,female,30,0,0,93.5
|
||||
0,3,Mr. Janko Vovk,male,22,0,0,7.8958
|
||||
0,3,Mr. Sarkis Lahoud,male,35,0,0,7.225
|
||||
1,1,Mrs. Louis Albert (Ida Sophia Fischer) Hippach,female,44,0,1,57.9792
|
||||
0,3,Mr. Fared Kassem,male,18,0,0,7.2292
|
||||
0,3,Mr. James Farrell,male,40.5,0,0,7.75
|
||||
1,2,Miss. Lucy Ridsdale,female,50,0,0,10.5
|
||||
0,1,Mr. John Farthing,male,49,0,0,221.7792
|
||||
0,3,Mr. Johan Werner Salonen,male,39,0,0,7.925
|
||||
0,2,Mr. Richard George Hocking,male,23,2,1,11.5
|
||||
1,2,Miss. Phyllis May Quick,female,2,1,1,26
|
||||
0,3,Mr. Nakli Toufik,male,17,0,0,7.2292
|
||||
0,3,Mr. Joseph Jr Elias,male,17,1,1,7.2292
|
||||
1,3,Mrs. Catherine (Catherine Rizk) Peter,female,24,0,2,22.3583
|
||||
0,3,Miss. Marija Cacic,female,30,0,0,8.6625
|
||||
1,2,Miss. Eva Miriam Hart,female,7,0,2,26.25
|
||||
0,1,Major. Archibald Willingham Butt,male,45,0,0,26.55
|
||||
1,1,Miss. Bertha LeRoy,female,30,0,0,106.425
|
||||
0,3,Mr. Samuel Beard Risien,male,69,0,0,14.5
|
||||
1,1,Miss. Hedwig Margaritha Frolicher,female,22,0,2,49.5
|
||||
1,1,Miss. Harriet R Crosby,female,36,0,2,71
|
||||
0,3,Miss. Ingeborg Constanzia Andersson,female,9,4,2,31.275
|
||||
0,3,Miss. Sigrid Elisabeth Andersson,female,11,4,2,31.275
|
||||
1,2,Mr. Edward Beane,male,32,1,0,26
|
||||
0,1,Mr. Walter Donald Douglas,male,50,1,0,106.425
|
||||
0,1,Mr. Arthur Ernest Nicholson,male,64,0,0,26
|
||||
1,2,Mrs. Edward (Ethel Clarke) Beane,female,19,1,0,26
|
||||
1,2,Mr. Julian Padro y Manent,male,27,0,0,13.8625
|
||||
0,3,Mr. Frank John Goldsmith,male,33,1,1,20.525
|
||||
1,2,Master. John Morgan Jr Davies,male,8,1,1,36.75
|
||||
1,1,Mr. John Borland Jr Thayer,male,17,0,2,110.8833
|
||||
0,2,Mr. Percival James R Sharp,male,27,0,0,26
|
||||
0,3,Mr. Timothy O'Brien,male,21,0,0,7.8292
|
||||
1,3,Mr. Fahim Leeni,male,22,0,0,7.225
|
||||
1,3,Miss. Velin Ohman,female,22,0,0,7.775
|
||||
0,1,Mr. George Wright,male,62,0,0,26.55
|
||||
1,1,Lady. (Lucille Christiana Sutherland)Duff Gordon,female,48,1,0,39.6
|
||||
0,1,Mr. Victor Robbins,male,45,0,0,227.525
|
||||
1,1,Mrs. Emil (Tillie Mandelbaum) Taussig,female,39,1,1,79.65
|
||||
1,3,Mrs. Guillaume Joseph (Emma) de Messemaeker,female,36,1,0,17.4
|
||||
0,3,Mr. Thomas Rowan Morrow,male,30,0,0,7.75
|
||||
0,3,Mr. Husein Sivic,male,40,0,0,7.8958
|
||||
0,2,Mr. Robert Douglas Norman,male,28,0,0,13.5
|
||||
0,3,Mr. John Simmons,male,40,0,0,8.05
|
||||
0,3,Miss. (Marion Ogden) Meanwell,female,62,0,0,8.05
|
||||
0,3,Mr. Alfred J Davies,male,24,2,0,24.15
|
||||
0,3,Mr. Ilia Stoytcheff,male,19,0,0,7.8958
|
||||
0,3,Mrs. Nils (Alma Cornelia Berglund) Palsson,female,29,0,4,21.075
|
||||
0,3,Mr. Tannous Doharr,male,28,0,0,7.2292
|
||||
1,3,Mr. Carl Jonsson,male,32,0,0,7.8542
|
||||
1,2,Mr. George Harris,male,62,0,0,10.5
|
||||
1,1,Mrs. Edward Dale (Charlotte Lamson) Appleton,female,53,2,0,51.4792
|
||||
1,1,Mr. John Irwin Flynn,male,36,0,0,26.3875
|
||||
1,3,Miss. Mary Kelly,female,22,0,0,7.75
|
||||
0,3,Mr. Alfred George John Rush,male,16,0,0,8.05
|
||||
0,3,Mr. George Patchett,male,19,0,0,14.5
|
||||
1,2,Miss. Ethel Garside,female,34,0,0,13
|
||||
1,1,Mrs. William Baird (Alice Munger) Silvey,female,39,1,0,55.9
|
||||
0,3,Mrs. Joseph (Maria Elias) Caram,female,18,1,0,14.4583
|
||||
1,3,Mr. Eiriik Jussila,male,32,0,0,7.925
|
||||
1,2,Miss. Julie Rachel Christy,female,25,1,1,30
|
||||
1,1,Mrs. John Borland (Marian Longstreth Morris) Thayer,female,39,1,1,110.8833
|
||||
0,2,Mr. William James Downton,male,54,0,0,26
|
||||
0,1,Mr. John Hugo Ross,male,36,0,0,40.125
|
||||
0,3,Mr. Uscher Paulner,male,16,0,0,8.7125
|
||||
1,1,Miss. Ruth Taussig,female,18,0,2,79.65
|
||||
0,2,Mr. John Denzil Jarvis,male,47,0,0,15
|
||||
1,1,Mr. Maxmillian Frolicher-Stehli,male,60,1,1,79.2
|
||||
0,3,Mr. Eliezer Gilinski,male,22,0,0,8.05
|
||||
0,3,Mr. Joseph Murdlin,male,22,0,0,8.05
|
||||
0,3,Mr. Matti Rintamaki,male,35,0,0,7.125
|
||||
1,1,Mrs. Walter Bertram (Martha Eustis) Stephenson,female,52,1,0,78.2667
|
||||
0,3,Mr. William James Elsbury,male,47,0,0,7.25
|
||||
0,3,Miss. Mary Bourke,female,40,0,2,7.75
|
||||
0,2,Mr. John Henry Chapman,male,37,1,0,26
|
||||
0,3,Mr. Jean Baptiste Van Impe,male,36,1,1,24.15
|
||||
1,2,Miss. Jessie Wills Leitch,female,31,0,0,33
|
||||
0,3,Mr. Alfred Johnson,male,49,0,0,0
|
||||
0,3,Mr. Hanna Boulos,male,18,0,0,7.225
|
||||
1,1,Sir. Cosmo Edmund Duff Gordon,male,49,1,0,56.9292
|
||||
1,2,Mrs. Sidney Samuel (Amy Frances Christy) Jacobsohn,female,24,2,1,27
|
||||
0,3,Mr. Petco Slabenoff,male,42,0,0,7.8958
|
||||
0,1,Mr. Charles H Harrington,male,37,0,0,42.4
|
||||
0,3,Mr. Ernst William Torber,male,44,0,0,8.05
|
||||
1,1,Mr. Harry Homer,male,35,0,0,26.55
|
||||
0,3,Mr. Edvard Bengtsson Lindell,male,36,1,0,15.55
|
||||
0,3,Mr. Milan Karaic,male,30,0,0,7.8958
|
||||
1,1,Mr. Robert Williams Daniel,male,27,0,0,30.5
|
||||
1,2,Mrs. Joseph (Juliette Marie Louise Lafargue) Laroche,female,22,1,2,41.5792
|
||||
1,1,Miss. Elizabeth W Shutes,female,40,0,0,153.4625
|
||||
0,3,Mrs. Anders Johan (Alfrida Konstantia Brogren) Andersson,female,39,1,5,31.275
|
||||
0,3,Mr. Jose Neto Jardin,male,21,0,0,7.05
|
||||
1,3,Miss. Margaret Jane Murphy,female,18,1,0,15.5
|
||||
0,3,Mr. John Horgan,male,22,0,0,7.75
|
||||
0,3,Mr. William Alfred Brocklebank,male,35,0,0,8.05
|
||||
1,2,Miss. Alice Herman,female,24,1,2,65
|
||||
0,3,Mr. Ernst Gilbert Danbom,male,34,1,1,14.4
|
||||
0,3,Mrs. William Arthur (Cordelia K Stanlick) Lobb,female,26,1,0,16.1
|
||||
1,2,Miss. Marion Louise Becker,female,4,2,1,39
|
||||
0,2,Mr. Lawrence Gavey,male,26,0,0,10.5
|
||||
0,3,Mr. Antoni Yasbeck,male,27,1,0,14.4542
|
||||
1,1,Mr. Edwin Nelson Jr Kimball,male,42,1,0,52.5542
|
||||
1,3,Mr. Sahid Nakid,male,20,1,1,15.7417
|
||||
0,3,Mr. Henry Damsgaard Hansen,male,21,0,0,7.8542
|
||||
0,3,Mr. David John Bowen,male,21,0,0,16.1
|
||||
0,1,Mr. Frederick Sutton,male,61,0,0,32.3208
|
||||
0,2,Rev. Charles Leonard Kirkland,male,57,0,0,12.35
|
||||
1,1,Miss. Gretchen Fiske Longley,female,21,0,0,77.9583
|
||||
0,3,Mr. Guentcho Bostandyeff,male,26,0,0,7.8958
|
||||
0,3,Mr. Patrick D O'Connell,male,18,0,0,7.7333
|
||||
1,1,Mr. Algernon Henry Wilson Barkworth,male,80,0,0,30
|
||||
0,3,Mr. Johan Svensson Lundahl,male,51,0,0,7.0542
|
||||
1,1,Dr. Max Stahelin-Maeglin,male,32,0,0,30.5
|
||||
0,1,Mr. William Henry Marsh Parr,male,30,0,0,0
|
||||
0,3,Miss. Mabel Skoog,female,9,3,2,27.9
|
||||
1,2,Miss. Mary Davis,female,28,0,0,13
|
||||
0,3,Mr. Antti Gustaf Leinonen,male,32,0,0,7.925
|
||||
0,2,Mr. Harvey Collyer,male,31,1,1,26.25
|
||||
0,3,Mrs. Juha (Maria Emilia Ojala) Panula,female,41,0,5,39.6875
|
||||
0,3,Mr. Percival Thorneycroft,male,37,1,0,16.1
|
||||
0,3,Mr. Hans Peder Jensen,male,20,0,0,7.8542
|
||||
1,1,Mlle. Emma Sagesser,female,24,0,0,69.3
|
||||
0,3,Miss. Margit Elizabeth Skoog,female,2,3,2,27.9
|
||||
1,3,Mr. Choong Foo,male,32,0,0,56.4958
|
||||
1,3,Miss. Eugenie Baclini,female,0.75,2,1,19.2583
|
||||
1,1,Mr. Henry Sleeper Harper,male,48,1,0,76.7292
|
||||
0,3,Mr. Liudevit Cor,male,19,0,0,7.8958
|
||||
1,1,Col. Oberst Alfons Simonius-Blumer,male,56,0,0,35.5
|
||||
0,3,Mr. Edward Willey,male,21,0,0,7.55
|
||||
1,3,Miss. Amy Zillah Elsie Stanley,female,23,0,0,7.55
|
||||
0,3,Mr. Mito Mitkoff,male,23,0,0,7.8958
|
||||
1,2,Miss. Elsie Doling,female,18,0,1,23
|
||||
0,3,Mr. Johannes Halvorsen Kalvik,male,21,0,0,8.4333
|
||||
1,3,Miss. Hanora O'Leary,female,16,0,0,7.8292
|
||||
0,3,Miss. Hanora Hegarty,female,18,0,0,6.75
|
||||
0,2,Mr. Leonard Mark Hickman,male,24,2,0,73.5
|
||||
0,3,Mr. Alexander Radeff,male,27,0,0,7.8958
|
||||
0,3,Mrs. John (Catherine) Bourke,female,32,1,1,15.5
|
||||
0,2,Mr. George Floyd Eitemiller,male,23,0,0,13
|
||||
0,1,Mr. Arthur Webster Newell,male,58,0,2,113.275
|
||||
1,1,Dr. Henry William Frauenthal,male,50,2,0,133.65
|
||||
0,3,Mr. Mohamed Badt,male,40,0,0,7.225
|
||||
0,1,Mr. Edward Pomeroy Colley,male,47,0,0,25.5875
|
||||
0,3,Mr. Peju Coleff,male,36,0,0,7.4958
|
||||
1,3,Mr. Eino William Lindqvist,male,20,1,0,7.925
|
||||
0,2,Mr. Lewis Hickman,male,32,2,0,73.5
|
||||
0,2,Mr. Reginald Fenton Butler,male,25,0,0,13
|
||||
0,3,Mr. Knud Paust Rommetvedt,male,49,0,0,7.775
|
||||
0,3,Mr. Jacob Cook,male,43,0,0,8.05
|
||||
1,1,Mrs. Elmer Zebley (Juliet Cummins Wright) Taylor,female,48,1,0,52
|
||||
1,2,Mrs. Thomas William Solomon (Elizabeth Catherine Ford) Brown,female,40,1,1,39
|
||||
0,1,Mr. Thornton Davidson,male,31,1,0,52
|
||||
0,2,Mr. Henry Michael Mitchell,male,70,0,0,10.5
|
||||
1,2,Mr. Charles Wilhelms,male,31,0,0,13
|
||||
0,2,Mr. Ennis Hastings Watson,male,19,0,0,0
|
||||
0,3,Mr. Gustaf Hjalmar Edvardsson,male,18,0,0,7.775
|
||||
0,3,Mr. Frederick Charles Sawyer,male,24.5,0,0,8.05
|
||||
1,3,Miss. Anna Sofia Turja,female,18,0,0,9.8417
|
||||
0,3,Mrs. Frederick (Augusta Tyler) Goodwin,female,43,1,6,46.9
|
||||
1,1,Mr. Thomas Drake Martinez Cardeza,male,36,0,1,512.3292
|
||||
0,3,Miss. Katie Peters,female,28,0,0,8.1375
|
||||
1,1,Mr. Hammad Hassab,male,27,0,0,76.7292
|
||||
0,3,Mr. Thor Anderson Olsvigen,male,20,0,0,9.225
|
||||
0,3,Mr. Charles Edward Goodwin,male,14,5,2,46.9
|
||||
0,2,Mr. Thomas William Solomon Brown,male,60,1,1,39
|
||||
0,2,Mr. Joseph Philippe Lemercier Laroche,male,25,1,2,41.5792
|
||||
0,3,Mr. Jaako Arnold Panula,male,14,4,1,39.6875
|
||||
0,3,Mr. Branko Dakic,male,19,0,0,10.1708
|
||||
0,3,Mr. Eberhard Thelander Fischer,male,18,0,0,7.7958
|
||||
1,1,Miss. Georgette Alexandra Madill,female,15,0,1,211.3375
|
||||
1,1,Mr. Albert Adrian Dick,male,31,1,0,57
|
||||
1,3,Miss. Manca Karun,female,4,0,1,13.4167
|
||||
1,3,Mr. Ali Lam,male,37,0,0,56.4958
|
||||
0,3,Mr. Khalil Saad,male,25,0,0,7.225
|
||||
0,1,Col. John Weir,male,60,0,0,26.55
|
||||
0,2,Mr. Charles Henry Chapman,male,52,0,0,13.5
|
||||
0,3,Mr. James Kelly,male,44,0,0,8.05
|
||||
1,3,Miss. Katherine Mullens,female,19,0,0,7.7333
|
||||
0,1,Mr. John Borland Thayer,male,49,1,1,110.8833
|
||||
0,3,Mr. Adolf Mathias Nicolai Olsen Humblen,male,42,0,0,7.65
|
||||
1,1,Mrs. John Jacob (Madeleine Talmadge Force) Astor,female,18,1,0,227.525
|
||||
1,1,Mr. Spencer Victor Silverthorne,male,35,0,0,26.2875
|
||||
0,3,Miss. Saiide Barbara,female,18,0,1,14.4542
|
||||
0,3,Mr. Martin Gallagher,male,25,0,0,7.7417
|
||||
0,3,Mr. Henrik Juul Hansen,male,26,1,0,7.8542
|
||||
0,2,Mr. Henry Samuel Morley,male,39,0,0,26
|
||||
1,2,Mrs. Florence Kelly,female,45,0,0,13.5
|
||||
1,1,Mr. Edward Pennington Calderhead,male,42,0,0,26.2875
|
||||
1,1,Miss. Alice Cleaver,female,22,0,0,151.55
|
||||
1,3,Master. Halim Gonios Moubarek,male,4,1,1,15.2458
|
||||
1,1,Mlle. Berthe Antonine Mayne,female,24,0,0,49.5042
|
||||
0,1,Mr. Herman Klaber,male,41,0,0,26.55
|
||||
1,1,Mr. Elmer Zebley Taylor,male,48,1,0,52
|
||||
0,3,Mr. August Viktor Larsson,male,29,0,0,9.4833
|
||||
0,2,Mr. Samuel Greenberg,male,52,0,0,13
|
||||
0,3,Mr. Peter Andreas Lauritz Andersen Soholt,male,19,0,0,7.65
|
||||
1,1,Miss. Caroline Louise Endres,female,38,0,0,227.525
|
||||
1,2,Miss. Edwina Celia Troutt,female,27,0,0,10.5
|
||||
0,3,Mr. Malkolm Joackim Johnson,male,33,0,0,7.775
|
||||
1,2,Miss. Annie Jessie Harper,female,6,0,1,33
|
||||
0,3,Mr. Svend Lauritz Jensen,male,17,1,0,7.0542
|
||||
0,2,Mr. William Henry Gillespie,male,34,0,0,13
|
||||
0,2,Mr. Henry Price Hodges,male,50,0,0,13
|
||||
1,1,Mr. Norman Campbell Chambers,male,27,1,0,53.1
|
||||
0,3,Mr. Luka Oreskovic,male,20,0,0,8.6625
|
||||
1,2,Mrs. Peter Henry (Lillian Jefferys) Renouf,female,30,3,0,21
|
||||
1,3,Miss. Margareth Mannion,female,28,0,0,7.7375
|
||||
0,2,Mr. Kurt Arnold Gottfrid Bryhl,male,25,1,0,26
|
||||
0,3,Miss. Pieta Sofia Ilmakangas,female,25,1,0,7.925
|
||||
1,1,Miss. Elisabeth Walton Allen,female,29,0,0,211.3375
|
||||
0,3,Mr. Houssein G N Hassan,male,11,0,0,18.7875
|
||||
0,2,Mr. Robert J Knight,male,41,0,0,0
|
||||
0,2,Mr. William John Berriman,male,23,0,0,13
|
||||
0,2,Mr. Moses Aaron Troupiansky,male,23,0,0,13
|
||||
0,3,Mr. Leslie Williams,male,28.5,0,0,16.1
|
||||
0,3,Mrs. Edward (Margaret Ann Watson) Ford,female,48,1,3,34.375
|
||||
1,1,Mr. Gustave J Lesurer,male,35,0,0,512.3292
|
||||
0,3,Mr. Kanio Ivanoff,male,20,0,0,7.8958
|
||||
0,3,Mr. Minko Nankoff,male,32,0,0,7.8958
|
||||
1,1,Mr. Walter James Hawksford,male,45,0,0,30
|
||||
0,1,Mr. Tyrell William Cavendish,male,36,1,0,78.85
|
||||
1,1,Miss. Susan Parker Ryerson,female,21,2,2,262.375
|
||||
0,3,Mr. Neal McNamee,male,24,1,0,16.1
|
||||
1,3,Mr. Juho Stranden,male,31,0,0,7.925
|
||||
0,1,Capt. Edward Gifford Crosby,male,70,1,1,71
|
||||
0,3,Mr. Rossmore Edward Abbott,male,16,1,1,20.25
|
||||
1,2,Miss. Anna Sinkkonen,female,30,0,0,13
|
||||
0,1,Mr. Daniel Warner Marvin,male,19,1,0,53.1
|
||||
0,3,Mr. Michael Connaghton,male,31,0,0,7.75
|
||||
1,2,Miss. Joan Wells,female,4,1,1,23
|
||||
1,3,Master. Meier Moor,male,6,0,1,12.475
|
||||
0,3,Mr. Johannes Joseph Vande Velde,male,33,0,0,9.5
|
||||
0,3,Mr. Lalio Jonkoff,male,23,0,0,7.8958
|
||||
1,2,Mrs. Samuel (Jane Laver) Herman,female,48,1,2,65
|
||||
1,2,Master. Viljo Hamalainen,male,0.67,1,1,14.5
|
||||
0,3,Mr. August Sigfrid Carlsson,male,28,0,0,7.7958
|
||||
0,2,Mr. Percy Andrew Bailey,male,18,0,0,11.5
|
||||
0,3,Mr. Thomas Leonard Theobald,male,34,0,0,8.05
|
||||
1,1,the Countess. of (Lucy Noel Martha Dyer-Edwards) Rothes,female,33,0,0,86.5
|
||||
0,3,Mr. John Garfirth,male,23,0,0,14.5
|
||||
0,3,Mr. Iisakki Antino Aijo Nirva,male,41,0,0,7.125
|
||||
1,3,Mr. Hanna Assi Barah,male,20,0,0,7.2292
|
||||
1,1,Mrs. William Ernest (Lucile Polk) Carter,female,36,1,2,120
|
||||
0,3,Mr. Hans Linus Eklund,male,16,0,0,7.775
|
||||
1,1,Mrs. John C (Anna Andrews) Hogeboom,female,51,1,0,77.9583
|
||||
0,1,Dr. Arthur Jackson Brewe,male,46,0,0,39.6
|
||||
0,3,Miss. Mary Mangan,female,30.5,0,0,7.75
|
||||
0,3,Mr. Daniel J Moran,male,28,1,0,24.15
|
||||
0,3,Mr. Daniel Danielsen Gronnestad,male,32,0,0,8.3625
|
||||
0,3,Mr. Rene Aime Lievens,male,24,0,0,9.5
|
||||
0,3,Mr. Niels Peder Jensen,male,48,0,0,7.8542
|
||||
0,2,Mrs. (Mary) Mack,female,57,0,0,10.5
|
||||
0,3,Mr. Dibo Elias,male,29,0,0,7.225
|
||||
1,2,Mrs. Elizabeth (Eliza Needs) Hocking,female,54,1,3,23
|
||||
0,3,Mr. Pehr Fabian Oliver Malkolm Myhrman,male,18,0,0,7.75
|
||||
0,3,Mr. Roger Tobin,male,20,0,0,7.75
|
||||
1,3,Miss. Virginia Ethel Emanuel,female,5,0,0,12.475
|
||||
0,3,Mr. Thomas J Kilgannon,male,22,0,0,7.7375
|
||||
1,1,Mrs. Edward Scott (Elisabeth Walton McMillan) Robert,female,43,0,1,211.3375
|
||||
1,3,Miss. Banoura Ayoub,female,13,0,0,7.2292
|
||||
1,1,Mrs. Albert Adrian (Vera Gillespie) Dick,female,17,1,0,57
|
||||
0,1,Mr. Milton Clyde Long,male,29,0,0,30
|
||||
0,3,Mr. Andrew G Johnston,male,35,1,2,23.45
|
||||
0,3,Mr. William Ali,male,25,0,0,7.05
|
||||
0,3,Mr. Abraham (David Lishin) Harmer,male,25,0,0,7.25
|
||||
1,3,Miss. Anna Sofia Sjoblom,female,18,0,0,7.4958
|
||||
0,3,Master. George Hugh Rice,male,8,4,1,29.125
|
||||
1,3,Master. Bertram Vere Dean,male,1,1,2,20.575
|
||||
0,1,Mr. Benjamin Guggenheim,male,46,0,0,79.2
|
||||
0,3,Mr. Andrew Keane,male,20,0,0,7.75
|
||||
0,2,Mr. Alfred Gaskell,male,16,0,0,26
|
||||
0,3,Miss. Stella Anna Sage,female,21,8,2,69.55
|
||||
0,1,Mr. William Fisher Hoyt,male,43,0,0,30.6958
|
||||
0,3,Mr. Ristiu Dantcheff,male,25,0,0,7.8958
|
||||
0,2,Mr. Richard Otter,male,39,0,0,13
|
||||
1,1,Dr. Alice (Farnham) Leader,female,49,0,0,25.9292
|
||||
1,3,Mrs. Mara Osman,female,31,0,0,8.6833
|
||||
0,3,Mr. Yousseff Ibrahim Shawah,male,30,0,0,7.2292
|
||||
0,3,Mrs. Jean Baptiste (Rosalie Paula Govaert) Van Impe,female,30,1,1,24.15
|
||||
0,2,Mr. Martin Ponesell,male,34,0,0,13
|
||||
1,2,Mrs. Harvey (Charlotte Annie Tate) Collyer,female,31,1,1,26.25
|
||||
1,1,Master. William Thornton II Carter,male,11,1,2,120
|
||||
1,3,Master. Assad Alexander Thomas,male,0.42,0,1,8.5167
|
||||
1,3,Mr. Oskar Arvid Hedman,male,27,0,0,6.975
|
||||
0,3,Mr. Karl Johan Johansson,male,31,0,0,7.775
|
||||
0,1,Mr. Thomas Jr Andrews,male,39,0,0,0
|
||||
0,3,Miss. Ellen Natalia Pettersson,female,18,0,0,7.775
|
||||
0,2,Mr. August Meyer,male,39,0,0,13
|
||||
1,1,Mrs. Norman Campbell (Bertha Griggs) Chambers,female,33,1,0,53.1
|
||||
0,3,Mr. William Alexander,male,26,0,0,7.8875
|
||||
0,3,Mr. James Lester,male,39,0,0,24.15
|
||||
0,2,Mr. Richard James Slemen,male,35,0,0,10.5
|
||||
0,3,Miss. Ebba Iris Alfrida Andersson,female,6,4,2,31.275
|
||||
0,3,Mr. Ernest Portage Tomlin,male,30.5,0,0,8.05
|
||||
0,1,Mr. Richard Fry,male,39,0,0,0
|
||||
0,3,Miss. Wendla Maria Heininen,female,23,0,0,7.925
|
||||
0,2,Mr. Albert Mallet,male,31,1,1,37.0042
|
||||
0,3,Mr. John Fredrik Alexander Holm,male,43,0,0,6.45
|
||||
0,3,Master. Karl Thorsten Skoog,male,10,3,2,27.9
|
||||
1,1,Mrs. Charles Melville (Clara Jennings Gregg) Hays,female,52,1,1,93.5
|
||||
1,3,Mr. Nikola Lulic,male,27,0,0,8.6625
|
||||
0,1,Jonkheer. John George Reuchlin,male,38,0,0,0
|
||||
1,3,Mrs. (Beila) Moor,female,27,0,1,12.475
|
||||
0,3,Master. Urho Abraham Panula,male,2,4,1,39.6875
|
||||
0,3,Mr. John Flynn,male,36,0,0,6.95
|
||||
0,3,Mr. Len Lam,male,23,0,0,56.4958
|
||||
1,2,Master. Andre Mallet,male,1,0,2,37.0042
|
||||
1,3,Mr. Thomas Joseph McCormack,male,19,0,0,7.75
|
||||
1,1,Mrs. George Nelson (Martha Evelyn) Stone,female,62,0,0,80
|
||||
1,3,Mrs. Antoni (Selini Alexander) Yasbeck,female,15,1,0,14.4542
|
||||
1,2,Master. George Sibley Richards,male,0.83,1,1,18.75
|
||||
0,3,Mr. Amin Saad,male,30,0,0,7.2292
|
||||
0,3,Mr. Albert Augustsson,male,23,0,0,7.8542
|
||||
0,3,Mr. Owen George Allum,male,18,0,0,8.3
|
||||
1,1,Miss. Sara Rebecca Compton,female,39,1,1,83.1583
|
||||
0,3,Mr. Jakob Pasic,male,21,0,0,8.6625
|
||||
0,3,Mr. Maurice Sirota,male,20,0,0,8.05
|
||||
1,3,Mr. Chang Chip,male,32,0,0,56.4958
|
||||
1,1,Mr. Pierre Marechal,male,29,0,0,29.7
|
||||
0,3,Mr. Ilmari Rudolf Alhomaki,male,20,0,0,7.925
|
||||
0,2,Mr. Thomas Charles Mudd,male,16,0,0,10.5
|
||||
1,1,Miss. Augusta Serepeca,female,30,0,0,31
|
||||
0,3,Mr. Peter L Lemberopolous,male,34.5,0,0,6.4375
|
||||
0,3,Mr. Jeso Culumovic,male,17,0,0,8.6625
|
||||
0,3,Mr. Anthony Abbing,male,42,0,0,7.55
|
||||
0,3,Mr. Douglas Bullen Sage,male,18,8,2,69.55
|
||||
0,3,Mr. Marin Markoff,male,35,0,0,7.8958
|
||||
0,2,Rev. John Harper,male,28,0,1,33
|
||||
1,1,Mrs. Samuel L (Edwiga Grabowska) Goldenberg,female,40,1,0,89.1042
|
||||
0,3,Master. Sigvard Harald Elias Andersson,male,4,4,2,31.275
|
||||
0,3,Mr. Johan Svensson,male,74,0,0,7.775
|
||||
0,3,Miss. Nourelain Boulos,female,9,1,1,15.2458
|
||||
1,1,Miss. Mary Conover Lines,female,16,0,1,39.4
|
||||
0,2,Mrs. Ernest Courtenay (Lilian Hughes) Carter,female,44,1,0,26
|
||||
1,3,Mrs. Sam (Leah Rosen) Aks,female,18,0,1,9.35
|
||||
1,1,Mrs. George Dennick (Mary Hitchcock) Wick,female,45,1,1,164.8667
|
||||
1,1,Mr. Peter Denis Daly,male,51,0,0,26.55
|
||||
1,3,Mrs. Solomon (Latifa Qurban) Baclini,female,24,0,3,19.2583
|
||||
0,3,Mr. Raihed Razi,male,30,0,0,7.2292
|
||||
0,3,Mr. Claus Peter Hansen,male,41,2,0,14.1083
|
||||
0,2,Mr. Frederick Edward Giles,male,21,1,0,11.5
|
||||
1,1,Mrs. Frederick Joel (Margaret Welles Barron) Swift,female,48,0,0,25.9292
|
||||
0,3,Miss. Dorothy Edith Sage,female,14,8,2,69.55
|
||||
0,2,Mr. John William Gill,male,24,0,0,13
|
||||
1,2,Mrs. (Karolina) Bystrom,female,42,0,0,13
|
||||
1,2,Miss. Asuncion Duran y More,female,27,1,0,13.8583
|
||||
0,1,Mr. Washington Augustus II Roebling,male,31,0,0,50.4958
|
||||
0,3,Mr. Philemon van Melkebeke,male,23,0,0,9.5
|
||||
1,3,Master. Harold Theodor Johnson,male,4,1,1,11.1333
|
||||
0,3,Mr. Cerin Balkic,male,26,0,0,7.8958
|
||||
1,1,Mrs. Richard Leonard (Sallie Monypeny) Beckwith,female,47,1,1,52.5542
|
||||
0,1,Mr. Frans Olof Carlsson,male,33,0,0,5
|
||||
0,3,Mr. Victor Vander Cruyssen,male,47,0,0,9
|
||||
1,2,Mrs. Samuel (Hannah Wizosky) Abelson,female,28,1,0,24
|
||||
1,3,Miss. Adele Kiamie Najib,female,15,0,0,7.225
|
||||
0,3,Mr. Alfred Ossian Gustafsson,male,20,0,0,9.8458
|
||||
0,3,Mr. Nedelio Petroff,male,19,0,0,7.8958
|
||||
0,3,Mr. Kristo Laleff,male,23,0,0,7.8958
|
||||
1,1,Mrs. Thomas Jr (Lily Alexenia Wilson) Potter,female,56,0,1,83.1583
|
||||
1,2,Mrs. William (Imanita Parrish Hall) Shelley,female,25,0,1,26
|
||||
0,3,Mr. Johann Markun,male,33,0,0,7.8958
|
||||
0,3,Miss. Gerda Ulrika Dahlberg,female,22,0,0,10.5167
|
||||
0,2,Mr. Frederick James Banfield,male,28,0,0,10.5
|
||||
0,3,Mr. Henry Jr Sutehall,male,25,0,0,7.05
|
||||
0,3,Mrs. William (Margaret Norton) Rice,female,39,0,5,29.125
|
||||
0,2,Rev. Juozas Montvila,male,27,0,0,13
|
||||
1,1,Miss. Margaret Edith Graham,female,19,0,0,30
|
||||
0,3,Miss. Catherine Helen Johnston,female,7,1,2,23.45
|
||||
1,1,Mr. Karl Howell Behr,male,26,0,0,30
|
||||
0,3,Mr. Patrick Dooley,male,32,0,0,7.75
|
|
@ -175,6 +175,7 @@
|
||||
"cell_type": "markdown",
|
||||
"id": "e7b78221-3568-45c5-964f-422b2668f4e5",
|
||||
"metadata": {
|
||||
"jp-MarkdownHeadingCollapsed": true,
|
||||
"nbgrader": {
|
||||
"grade": false,
|
||||
"grade_id": "cell-30de8243b097dfdc",
|
||||
@ -212,7 +213,8 @@
|
||||
"schema_version": 3,
|
||||
"solution": false,
|
||||
"task": false
|
||||
}
|
||||
},
|
||||
"scrolled": true
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
@ -640,7 +642,8 @@
|
||||
"schema_version": 3,
|
||||
"solution": true,
|
||||
"task": false
|
||||
}
|
||||
},
|
||||
"scrolled": true
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
@ -1087,6 +1090,7 @@
|
||||
"cell_type": "markdown",
|
||||
"id": "147244b1-7bdc-40bc-9f87-93997f9742ed",
|
||||
"metadata": {
|
||||
"jp-MarkdownHeadingCollapsed": true,
|
||||
"nbgrader": {
|
||||
"grade": false,
|
||||
"grade_id": "cell-230328a26793cddb",
|
||||
@ -1239,6 +1243,7 @@
|
||||
"cell_type": "markdown",
|
||||
"id": "d5275062-b7f5-4193-9b5a-70f4e861c819",
|
||||
"metadata": {
|
||||
"jp-MarkdownHeadingCollapsed": true,
|
||||
"nbgrader": {
|
||||
"grade": false,
|
||||
"grade_id": "cell-3adde3f53176bcb0",
|
||||
@ -1450,7 +1455,8 @@
|
||||
"schema_version": 3,
|
||||
"solution": false,
|
||||
"task": false
|
||||
}
|
||||
},
|
||||
"scrolled": true
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
@ -1603,7 +1609,8 @@
|
||||
"schema_version": 3,
|
||||
"solution": true,
|
||||
"task": false
|
||||
}
|
||||
},
|
||||
"scrolled": true
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
@ -1714,7 +1721,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.12.0"
|
||||
"version": "3.12.7"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
Before Width: | Height: | Size: 421 KiB After Width: | Height: | Size: 19 KiB |
Before Width: | Height: | Size: 69 KiB |
Before Width: | Height: | Size: 19 KiB |
@ -1,5 +1,13 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "a3bf87b4-95cf-4ba0-9a5b-0850aeaa69a9",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "2232b758-63e1-41d2-9408-179a53a85aa2",
|
||||
@ -652,7 +660,8 @@
|
||||
"schema_version": 3,
|
||||
"solution": false,
|
||||
"task": false
|
||||
}
|
||||
},
|
||||
"scrolled": true
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
@ -896,7 +905,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 51,
|
||||
"execution_count": 1,
|
||||
"id": "f011df4d-29ff-4064-b41f-6f008cc75674",
|
||||
"metadata": {
|
||||
"nbgrader": {
|
||||
@ -912,29 +921,10 @@
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[91.67441575549084,\n",
|
||||
" 46.74907799518424,\n",
|
||||
" 7.123920291270869,\n",
|
||||
" 76.39328676507445,\n",
|
||||
" 1.7567502091441867,\n",
|
||||
" 25.302055214458075,\n",
|
||||
" 63.618561250625696,\n",
|
||||
" 0.1579146041553514,\n",
|
||||
" 70.96566546463475,\n",
|
||||
" 29.830322658786066,\n",
|
||||
" 32.993271323881935,\n",
|
||||
" 85.498191941231,\n",
|
||||
" 28.897614421550255,\n",
|
||||
" 7.23902480784705,\n",
|
||||
" 70.31144257136475,\n",
|
||||
" 24.870797377171648,\n",
|
||||
" 15.503033920124121,\n",
|
||||
" 20.10861125030664,\n",
|
||||
" 46.93021735717943,\n",
|
||||
" 47.12091752159737]"
|
||||
"20"
|
||||
]
|
||||
},
|
||||
"execution_count": 51,
|
||||
"execution_count": 1,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
@ -944,7 +934,7 @@
|
||||
"from numpy.random import SeedSequence, Generator, PCG64\n",
|
||||
"sg = SeedSequence(42)\n",
|
||||
"pcgs = [Generator(PCG64(s)).random()*100 for s in sg.spawn(20)]\n",
|
||||
"pcgs"
|
||||
"len(pcgs)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@ -1394,7 +1384,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.5"
|
||||
"version": "3.12.7"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
@ -1,923 +0,0 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"nbgrader": {
|
||||
"grade": false,
|
||||
"grade_id": "cell-fae4670da2ba00e2",
|
||||
"locked": true,
|
||||
"schema_version": 3,
|
||||
"solution": false,
|
||||
"task": false
|
||||
},
|
||||
"tags": []
|
||||
},
|
||||
"source": [
|
||||
"# Graphical representations, Matplotlib, Contour Plots\n",
|
||||
"\n",
|
||||
"A Python plotting library called Matplotlib creates publication-quality graphics in a range of physical formats and in cross-platform interactive settings.\n",
|
||||
"Four graphical user interface toolkits, the Python and IPython shells, the Jupyter notebook, web application servers, and Python scripts can all make use of Matplotlib. The open source documentation can be found under: https://matplotlib.org/stable/index.html#\n",
|
||||
"\n",
|
||||
"__Creating Plots__\n",
|
||||
"\n",
|
||||
"Figure\n",
|
||||
"\n",
|
||||
"|Operator |\tDescription |\n",
|
||||
"|---------|-------------|\n",
|
||||
"|fig = plt.figures() | a container that contains all plot elements |\n",
|
||||
"\n",
|
||||
"Axes\n",
|
||||
"\n",
|
||||
"|Operator |\tDescription |\n",
|
||||
"|---------|-------------|\n",
|
||||
"|fig.add_axes() <br> a = fig.add_subplot(222) | Initializes subplot <br> A subplot is an axes on a grid system row-col-num. |\n",
|
||||
"|fig, b = plt.subplots(nrows=3, nclos=2) | Adds subplot |\n",
|
||||
"|ax = plt.subplots(2, 2) |\tCreates subplot |\n",
|
||||
"\n",
|
||||
"__Plotting__\n",
|
||||
"\n",
|
||||
"1D Data\n",
|
||||
"\n",
|
||||
"|Operator |\tDescription|\n",
|
||||
"|---------|------------|\n",
|
||||
"|lines = plt.plot(x,y) | Plot data connected by lines|\n",
|
||||
"|plt.scatter(x,y) | Creates a scatterplot, unconnected data points|\n",
|
||||
"|plt.bar(xvalue, data , width, color...) | simple vertical bar chart|\n",
|
||||
"|plt.barh(yvalue, data, width, color...) | simple horizontal bar|\n",
|
||||
"|plt.hist(x, y) | Plots a histogram|\n",
|
||||
"|plt.boxplot(x,y) | Box and Whisker plot|\n",
|
||||
"|plt.violinplot(x, y) |\tCreates violin plot|\n",
|
||||
"|ax.fill(x, y, color='lightblue') <br> ax.fill_between(x,y,color='lightblue') | Fill area under/between plots|\n",
|
||||
"\n",
|
||||
"2D Data\n",
|
||||
"\n",
|
||||
"|Operator |\tDescription|\n",
|
||||
"|---------|------------|\n",
|
||||
"|fig,ax = plt.subplots() <br> im = ax.imshow(img,cmap,vmin...) | Colormap or RGB arrays | \n",
|
||||
"\n",
|
||||
"Saving plots\n",
|
||||
"\n",
|
||||
"|Operator |\tDescription|\n",
|
||||
"|---------|------------|\n",
|
||||
"|plt.savefig('fig.png') | Saves plot/figure to image |\n",
|
||||
"\n",
|
||||
"__Customization__\n",
|
||||
"\n",
|
||||
"Color\n",
|
||||
"\n",
|
||||
"|Operator | Description|\n",
|
||||
"|---------|------------|\n",
|
||||
"|plt.plot(x,y,color='lightblue') <br> plt.plot(x,y,alpha = 0.4) | Colors plot to light bluw color |\n",
|
||||
"|plt.colorbar(mappable,orientation='horizontal') | mappable:the image,contourset to which colorbar applies. |\n",
|
||||
"\n",
|
||||
"Markers\n",
|
||||
"\n",
|
||||
"|Operator | Description|\n",
|
||||
"|---------|------------|\n",
|
||||
"|plt.plot(x,y,marker='*') | adds * for every data point |\n",
|
||||
"|plt.plot(x,y,marker='.') | adds . for every data point |\n",
|
||||
"\n",
|
||||
"Lines\n",
|
||||
"\n",
|
||||
"|Operator | Description|\n",
|
||||
"|---------|------------|\n",
|
||||
"|plt.plot(x, y, linewidth=2) | Sets line width|\n",
|
||||
"|plt.plot(x, y, ls='solid') | Sets linestyle, ls can be ommitted, see 2 below|\n",
|
||||
"|plt.plot(x, y, ls='--') | Sets linestyle, ls can be ommitted, see below|\n",
|
||||
"|plt.plot(x,y,'--', x\\*\\*2, y\\*\\*2, '-.') | Lines are '--' and '-.' |\n",
|
||||
"|plt.setp(lines,color='red',linewidth=2) | Sets properties of plot lines|\n",
|
||||
"\n",
|
||||
"Text\n",
|
||||
"\n",
|
||||
"|Operator | Description|\n",
|
||||
"|---------|------------|\n",
|
||||
"|plt.text(1,1,'Text',style='italic') | Places text at coordinates (1,1)|\n",
|
||||
"|ax.annotate('point A',xy=(10,10)) | Annotate the point with coordinates xy|\n",
|
||||
"|pt.title(r'\\$delta\\_i=20\\$',fontsize=10)| Math text|\n",
|
||||
"\n",
|
||||
"Limits\n",
|
||||
"\n",
|
||||
"|Operators | Description|\n",
|
||||
"|----------|------------|\n",
|
||||
"|plt.xlim(0, 7) | Sets x-axis to display 0 - 7|\n",
|
||||
"|other = array.copy() | Creates deep copy of array|\n",
|
||||
"|plt.ylim(-0.5, 9) | Sets y-axis to display -0.5 - 9|\n",
|
||||
"|ax.set(xlim=[0, 7], ylim=[-0.5, 9]) <br> ax.set_xlim(0, 7) | Sets limits|\n",
|
||||
"|plt.margins(x=1.0, y=1.0) | Set margins: add padding to a plot, values 0 - 1|\n",
|
||||
"|plt.axis('equal') | Set the aspect ratio of the plot to 1|\n",
|
||||
"\n",
|
||||
"Legends/Labels\n",
|
||||
"\n",
|
||||
"|Operator | Description|\n",
|
||||
"|---------|------------|\n",
|
||||
"|plt.title('Title') | Sets title of plot|\n",
|
||||
"|plt.xlabel('x-axis') | Sets label next to x-axis|\n",
|
||||
"|plt.ylabel('y-axis') | Sets label next to y-axis|\n",
|
||||
"|ax.set(title='axis', ylabel='Y-Axis', xlabel='X-Axis') | Set title and axis labels|\n",
|
||||
"|ax.legend(loc='best') | No overlapping plot elements|\n",
|
||||
"\n",
|
||||
"Ticks\n",
|
||||
"\n",
|
||||
"|Operator | Description|\n",
|
||||
"|---------|------------|\n",
|
||||
"|plt.xticks(x, labels, rotation='vertical') | Set ticks|\n",
|
||||
"|ax.xaxis.set(ticks=range(1,5), ticklabels=[3,100,-12,\"foo\"]) | Set x-ticks|\n",
|
||||
"|ax.tick_params(axis='y', direction='inout', length=10) | Make y-ticks longer and go in and out|"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"nbgrader": {
|
||||
"grade": false,
|
||||
"grade_id": "cell-a1f4d01637d085cc",
|
||||
"locked": true,
|
||||
"schema_version": 3,
|
||||
"solution": false,
|
||||
"task": false
|
||||
},
|
||||
"tags": []
|
||||
},
|
||||
"source": [
|
||||
"Load the necessary packages and define the arrays __x__, __y__ and __z__ by running the cell below."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import matplotlib\n",
|
||||
"import matplotlib.pyplot as plt\n",
|
||||
"%matplotlib inline\n",
|
||||
"import numpy as np\n",
|
||||
"x = np.arange(0,100)\n",
|
||||
"y = x*2\n",
|
||||
"z = x**2"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"nbgrader": {
|
||||
"grade": false,
|
||||
"grade_id": "cell-c92f9e3b1186aa0a",
|
||||
"locked": true,
|
||||
"schema_version": 3,
|
||||
"solution": false,
|
||||
"task": false
|
||||
},
|
||||
"tags": []
|
||||
},
|
||||
"source": [
|
||||
"\n",
|
||||
"## Exercise 1\n",
|
||||
"\n",
|
||||
"Follow along with these steps:\n",
|
||||
"\n",
|
||||
"- Create a figure object called __fig__ using plt.figure()\n",
|
||||
"- Use add_axes to add an axis to the figure canvas at [0,0,1,1]. Call this new axis __ax__.\n",
|
||||
"- Plot (x,y) on that axes and set the labels and titles to match the plot below:\n",
|
||||
"\n",
|
||||
"![Plot XY](exercise1.png)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"\n",
|
||||
"fig = plt.figure()\n",
|
||||
"ax = fig.add_axes([0,0,1,1])\n",
|
||||
"ax.plot(x,y)\n",
|
||||
"ax.set_xlabel('x')\n",
|
||||
"ax.set_ylabel('y')\n",
|
||||
"ax.set_title('plot xy')\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"nbgrader": {
|
||||
"grade": true,
|
||||
"grade_id": "cell-f487f69f6d693b81",
|
||||
"locked": true,
|
||||
"points": 0,
|
||||
"schema_version": 3,
|
||||
"solution": false,
|
||||
"task": false
|
||||
},
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"### BEGIN HIDDEN TEST\n",
|
||||
"assert isinstance(fig,plt.Figure), f\"{fig} is not an instance of plt.Figure\"\n",
|
||||
"assert isinstance(ax,matplotlib.axes._axes.Axes), f\"{ax} is not an axis \"\n",
|
||||
"assert ax.get_title().lower() == 'plot xy', f\"{ax.get_title()} is not the same as plot xy\"\n",
|
||||
"assert ax.get_xlabel().lower() == 'x'\n",
|
||||
"assert ax.get_ylabel().lower() == 'y'\n",
|
||||
"### END HIDDEN TEST"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"nbgrader": {
|
||||
"grade": false,
|
||||
"grade_id": "cell-009335e6db4359f4",
|
||||
"locked": true,
|
||||
"schema_version": 3,
|
||||
"solution": false,
|
||||
"task": false
|
||||
},
|
||||
"tags": []
|
||||
},
|
||||
"source": [
|
||||
"\n",
|
||||
"## Exercise 2\n",
|
||||
"\n",
|
||||
"Create a figure object and put two axes on it, ax1 and ax2. Located at [0,0,1,1] and [0.5,0.5,0.3,0.3] respectively."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"\n",
|
||||
"fig = plt.figure()\n",
|
||||
"\n",
|
||||
"ax1 = fig.add_axes([0,0,1,1])\n",
|
||||
"ax2 = fig.add_axes([0.5,0.5,0.3,0.3])\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"### BEGIN HIDDEN TEST\n",
|
||||
"assert isinstance(ax1,matplotlib.axes._axes.Axes), f\"{ax1} is not an axis \"\n",
|
||||
"assert isinstance(ax2,matplotlib.axes._axes.Axes), f\"{ax2} is not an axis \"\n",
|
||||
"### END HIDDEN TEST"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"nbgrader": {
|
||||
"grade": false,
|
||||
"grade_id": "cell-ad87f38d4c194c66",
|
||||
"locked": true,
|
||||
"schema_version": 3,
|
||||
"solution": false,
|
||||
"task": false
|
||||
},
|
||||
"tags": []
|
||||
},
|
||||
"source": [
|
||||
"Now plot (x,y) on axes __ax1__ and on axes __ax2__ plot (x,z) as shown in \n",
|
||||
"\n",
|
||||
"![Alt text](exercise2.png). \n",
|
||||
"\n",
|
||||
"And call your figure object to show it."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"\n",
|
||||
"ax1.plot(x,y)\n",
|
||||
"ax1.set_title('plot xy')\n",
|
||||
"ax1.set_xlabel('x')\n",
|
||||
"ax1.set_ylabel('y')\n",
|
||||
"\n",
|
||||
"ax2.plot(x,z)\n",
|
||||
"ax2.set_title('plot xz')\n",
|
||||
"ax2.set_xlabel('x')\n",
|
||||
"ax2.set_ylabel('z')\n",
|
||||
"\n",
|
||||
"fig # Show figure object\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"nbgrader": {
|
||||
"grade": true,
|
||||
"grade_id": "cell-52e7d1a8a36277f7",
|
||||
"locked": true,
|
||||
"points": 0,
|
||||
"schema_version": 3,
|
||||
"solution": false,
|
||||
"task": false
|
||||
},
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"### BEGIN HIDDEN TEST\n",
|
||||
"assert ax1.get_title().lower() == 'plot xy', f\"{ax.get_title()} is not the same as plot xy\"\n",
|
||||
"assert ax1.get_xlabel().lower() == 'x'\n",
|
||||
"assert ax1.get_ylabel().lower() == 'y'\n",
|
||||
"\n",
|
||||
"assert ax2.get_title().lower() == 'plot xz', f\"{ax.get_title()} is not the same as plot xz\"\n",
|
||||
"assert ax2.get_xlabel().lower() == 'x'\n",
|
||||
"assert ax2.get_ylabel().lower() == 'z'\n",
|
||||
"### END HIDDEN TEST"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"nbgrader": {
|
||||
"grade": false,
|
||||
"grade_id": "cell-383cddeb2332477d",
|
||||
"locked": true,
|
||||
"schema_version": 3,
|
||||
"solution": false,
|
||||
"task": false
|
||||
},
|
||||
"tags": []
|
||||
},
|
||||
"source": [
|
||||
"\n",
|
||||
"## Exercise 3\n",
|
||||
"\n",
|
||||
"Create the plot below by adding two axes to a figure object at [0,0,1,1] and name it __Plot A__ and at [0.2,0.5,0.4,0.4] and name it as __Plot B__.\n",
|
||||
"![Exercise 3](exercise3.png)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"\n",
|
||||
"fig = plt.figure()\n",
|
||||
"\n",
|
||||
"ax = fig.add_axes([0,0,1,1])\n",
|
||||
"ax.set_title('Plot A')\n",
|
||||
"\n",
|
||||
"ax2 = fig.add_axes([0.2,0.5,0.4,0.4])\n",
|
||||
"ax2.set_title('Plot B')\n",
|
||||
"\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"nbgrader": {
|
||||
"grade": true,
|
||||
"grade_id": "cell-f1b47006770bcca0",
|
||||
"locked": true,
|
||||
"points": 0,
|
||||
"schema_version": 3,
|
||||
"solution": false,
|
||||
"task": false
|
||||
},
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"### BEGIN HIDDEN TEST\n",
|
||||
"assert isinstance(ax,matplotlib.axes._axes.Axes), f\"{ax} is not an axis \"\n",
|
||||
"assert isinstance(ax2,matplotlib.axes._axes.Axes), f\"{ax2} is not an axis \"\n",
|
||||
"assert ax.get_title().lower() == 'plot a', f\"{ax.get_title()} is not the same as plot A\"\n",
|
||||
"assert ax2.get_title().lower() == 'plot b', f\"{ax2.get_title()} is not the same as plot B\"\n",
|
||||
"### END HIDDEN TEST"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"nbgrader": {
|
||||
"grade": false,
|
||||
"grade_id": "cell-91b7c64bab74fa07",
|
||||
"locked": true,
|
||||
"schema_version": 3,
|
||||
"solution": false,
|
||||
"task": false
|
||||
},
|
||||
"tags": []
|
||||
},
|
||||
"source": [
|
||||
"Now use x and z arrays to create a zoomed version as shown in the plot below. Notice the x limits and y limits on the inserted plot:![Exercise 3.b](exercise3_b.png)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"\n",
|
||||
"ax.plot(x,z)\n",
|
||||
"ax.set_xlabel('X')\n",
|
||||
"ax.set_ylabel('Z')\n",
|
||||
"ax.set_title('full')\n",
|
||||
"\n",
|
||||
"ax2.plot(x,z)\n",
|
||||
"ax2.set_xlabel('X')\n",
|
||||
"ax2.set_ylabel('Z')\n",
|
||||
"ax2.set_title('zoom')\n",
|
||||
"ax2.set_xlim(20,40)\n",
|
||||
"ax2.set_ylim(0,2000)\n",
|
||||
"\n",
|
||||
"fig\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"nbgrader": {
|
||||
"grade": true,
|
||||
"grade_id": "cell-725ebaa6bc9455b8",
|
||||
"locked": true,
|
||||
"points": 0,
|
||||
"schema_version": 3,
|
||||
"solution": false,
|
||||
"task": false
|
||||
},
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"### BEGIN HIDDEN TEST\n",
|
||||
"assert isinstance(ax,matplotlib.axes._axes.Axes), f\"{ax1} is not an axis \"\n",
|
||||
"assert isinstance(ax2,matplotlib.axes._axes.Axes), f\"{ax2} is not an axis \"\n",
|
||||
"assert ax.get_title().lower() == 'full', f\"{ax.get_title()} is not the same as full\"\n",
|
||||
"assert ax2.get_title().lower() == 'zoom', f\"{ax.get_title()} is not the same as zoom\"\n",
|
||||
"### END HIDDEN TEST"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"nbgrader": {
|
||||
"grade": false,
|
||||
"grade_id": "cell-29c04b7329cfa60e",
|
||||
"locked": true,
|
||||
"schema_version": 3,
|
||||
"solution": false,
|
||||
"task": false
|
||||
},
|
||||
"tags": []
|
||||
},
|
||||
"source": [
|
||||
"## Exercise 4\n",
|
||||
"\n",
|
||||
"Use plt.subplots(nrows=1, ncols=2) to create empty plot below. Name the first subplot as __xy__ and second subplot as __xz__.\n",
|
||||
"\n",
|
||||
"![Exercise 4_a](exercise4_a.png)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"\n",
|
||||
"fig, axes = plt.subplots(nrows=1, ncols=2)\n",
|
||||
"axes[0].set_title('xy')\n",
|
||||
"axes[1].set_title('xz')\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"nbgrader": {
|
||||
"grade": true,
|
||||
"grade_id": "cell-046fc90eb41678c4",
|
||||
"locked": true,
|
||||
"points": 0,
|
||||
"schema_version": 3,
|
||||
"solution": false,
|
||||
"task": false
|
||||
},
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"### BEGIN HIDDEN TEST\n",
|
||||
"assert isinstance(axes,np.ndarray)\n",
|
||||
"assert isinstance(axes[0],matplotlib.axes._axes.Axes) and isinstance(axes[1],matplotlib.axes._axes.Axes)\n",
|
||||
"assert axes[0].get_title().lower() == 'xy', f\"{axes[0].get_title()} is not the same as xy\"\n",
|
||||
"assert axes[1].get_title().lower() == 'xz', f\"{axes[1].get_title()} is not the same as xz\"\n",
|
||||
"### END HIDDEN TEST"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"nbgrader": {
|
||||
"grade": false,
|
||||
"grade_id": "cell-3e6118aac1523838",
|
||||
"locked": true,
|
||||
"schema_version": 3,
|
||||
"solution": false,
|
||||
"task": false
|
||||
},
|
||||
"tags": []
|
||||
},
|
||||
"source": [
|
||||
" Now plot (x,y) and (x,z) on the respective axes. Set the linewidth to 3pt, marker to '__*__' and color of __xy__ plot to red and for the __xz__ plot, set color to blue and linestyle to dashed. "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"\n",
|
||||
"axes[0].plot(x,y,color=\"blue\", lw=3, marker='*')\n",
|
||||
"axes[0].set_xlabel('x')\n",
|
||||
"axes[0].set_ylabel('y')\n",
|
||||
"\n",
|
||||
"axes[1].plot(x,z,color=\"red\", lw=3, ls='--')\n",
|
||||
"axes[1].set_xlabel('x')\n",
|
||||
"axes[1].set_ylabel('z')\n",
|
||||
"\n",
|
||||
"fig\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"nbgrader": {
|
||||
"grade": false,
|
||||
"grade_id": "cell-8690f8c5e6e59a90",
|
||||
"locked": true,
|
||||
"schema_version": 3,
|
||||
"solution": false,
|
||||
"task": false
|
||||
},
|
||||
"tags": []
|
||||
},
|
||||
"source": [
|
||||
"Plot the same figure with a size of (10,2) by adding the __figsize__ argument in plt.subplots()."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"\n",
|
||||
"fig, axes = plt.subplots(nrows=1, ncols=2,figsize=(10,2))\n",
|
||||
"\n",
|
||||
"axes[0].plot(x,y,color=\"blue\", lw=3, marker='*')\n",
|
||||
"axes[0].set_xlabel('x')\n",
|
||||
"axes[0].set_ylabel('y')\n",
|
||||
"\n",
|
||||
"axes[1].plot(x,z,color=\"red\", lw=3, ls='--')\n",
|
||||
"axes[1].set_xlabel('x')\n",
|
||||
"axes[1].set_ylabel('z')\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"nbgrader": {
|
||||
"grade": false,
|
||||
"grade_id": "cell-becf64c4bbc48d1f",
|
||||
"locked": true,
|
||||
"schema_version": 3,
|
||||
"solution": false,
|
||||
"task": false
|
||||
},
|
||||
"tags": []
|
||||
},
|
||||
"source": [
|
||||
"## Bar plots\n",
|
||||
"\n",
|
||||
"Bar plot enables us to visualize the distribution of categorical data variables. They represent distribution of discrete values. Thus, it represents the comparison of categorical values. The x axis represents the discrete values while the y axis represents the numeric values of comparison and vice versa.The open source documentation can be found under https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.bar.html\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"nbgrader": {
|
||||
"grade": false,
|
||||
"grade_id": "cell-d509dfb9ce8c8417",
|
||||
"locked": true,
|
||||
"schema_version": 3,
|
||||
"solution": false,
|
||||
"task": false
|
||||
},
|
||||
"tags": []
|
||||
},
|
||||
"source": [
|
||||
"## Exercise 5\n",
|
||||
"\n",
|
||||
"Initialize the variables with the following data and plot a bar graph to vizualize the popularity of various Programming languages.\n",
|
||||
"\n",
|
||||
"|Programming Languages|Java|Python|PHP|JavaScript|C\\#|C++|\n",
|
||||
"|--|--|--|--|--|--|--|\n",
|
||||
"|Popularity|22.2|17.6|8.8|8|7.7|6.7|\n",
|
||||
"\n",
|
||||
"- The plot should have grids on (both major and minor). \n",
|
||||
"- Name the title of the figure as __Popularity of Programming Language Worldwide__.\n",
|
||||
"- Label both x and y axes with respective labels.\n",
|
||||
"\n",
|
||||
"The final plot should look like this:\n",
|
||||
"\n",
|
||||
"![Exercise 5a](exercise5_a.png)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"\n",
|
||||
"x = ['Java', 'Python', 'PHP', 'JavaScript', 'C#', 'C++']\n",
|
||||
"p = [22.2, 17.6, 8.8, 8, 7.7, 6.7]\n",
|
||||
"x_pos = [i for i,val in enumerate(x)]\n",
|
||||
"\n",
|
||||
"fig = plt.figure()\n",
|
||||
"ax = fig.add_axes([0,0,1,1])\n",
|
||||
"\n",
|
||||
"ax.set_title('Popularity of Programming Language Worldwide')\n",
|
||||
"ax.set_xlabel('Languages')\n",
|
||||
"ax.set_ylabel('Popularity')\n",
|
||||
"\n",
|
||||
"ax.minorticks_on()\n",
|
||||
"ax.grid(which='minor',linestyle=':')\n",
|
||||
"ax.grid(which='major',linestyle='-')\n",
|
||||
"\n",
|
||||
"bar = ax.bar(x_pos,p)\n",
|
||||
"ax.set_xticks(x_pos,x)\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"nbgrader": {
|
||||
"grade": false,
|
||||
"grade_id": "cell-5e9ee62323d8fb2d",
|
||||
"locked": true,
|
||||
"schema_version": 3,
|
||||
"solution": false,
|
||||
"task": false
|
||||
},
|
||||
"tags": []
|
||||
},
|
||||
"source": [
|
||||
"Change the color of the bars to ['red', 'black', 'green', 'blue', 'yellow', 'cyan'] :\n",
|
||||
"\n",
|
||||
"![Exercise 5c](exercise5_c.png)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"\n",
|
||||
"colors = ['red', 'black', 'green', 'blue', 'yellow', 'cyan']\n",
|
||||
"for i,color in enumerate(colors):\n",
|
||||
" bar[i].set_color(color)\n",
|
||||
"fig\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"nbgrader": {
|
||||
"grade": false,
|
||||
"grade_id": "cell-345c3a5c2f31b1c4",
|
||||
"locked": true,
|
||||
"schema_version": 3,
|
||||
"solution": false,
|
||||
"task": false
|
||||
},
|
||||
"tags": []
|
||||
},
|
||||
"source": [
|
||||
"Plot the same data as horizontal bar graph in a new figure as shown below:\n",
|
||||
"\n",
|
||||
"![Exercise 5b](exercise5_b.png)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"\n",
|
||||
"fig = plt.figure()\n",
|
||||
"ax = fig.add_axes([0,0,1,1])\n",
|
||||
"ax.set_title('Popularity of Programming Language Worldwide')\n",
|
||||
"ax.set_xlabel('Popularity')\n",
|
||||
"ax.set_ylabel('Languages')\n",
|
||||
"\n",
|
||||
"ax.minorticks_on()\n",
|
||||
"ax.grid(which='minor',linestyle=':')\n",
|
||||
"ax.grid(which='major',linestyle='-')\n",
|
||||
"\n",
|
||||
"ax.barh(x_pos,p)\n",
|
||||
"ax.set_yticks(x_pos,x)\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"nbgrader": {
|
||||
"grade": false,
|
||||
"grade_id": "cell-4356eca51fa89384",
|
||||
"locked": true,
|
||||
"schema_version": 3,
|
||||
"solution": false,
|
||||
"task": false
|
||||
},
|
||||
"tags": []
|
||||
},
|
||||
"source": [
|
||||
"## Pie Charts\n",
|
||||
"\n",
|
||||
"A pie chart is a circular statistical graphic, which is divided into slices to illustrate numerical proportions. In a pie chart, the arc length of each slice is proportional to the quantity it represents. Pie charts are a popular way to represent the results of polls. The open source documentation can be found under https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.pie.html#matplotlib.pyplot.pie"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"nbgrader": {
|
||||
"grade": false,
|
||||
"grade_id": "cell-6c1fcc8a4ad86fac",
|
||||
"locked": true,
|
||||
"schema_version": 3,
|
||||
"solution": false,
|
||||
"task": false
|
||||
},
|
||||
"tags": []
|
||||
},
|
||||
"source": [
|
||||
"## Exercise 6\n",
|
||||
"\n",
|
||||
"Initialize the following data and plot a pie chart to visualize the prefered sports among people:\n",
|
||||
"|Sports|Cricket|Football|Hockey|F1|\n",
|
||||
"|--|--|--|--|--|\n",
|
||||
"|People|15|30|45|10|\n",
|
||||
"\n",
|
||||
"The sports title should be the labels of the pie chart as shown below:\n",
|
||||
"\n",
|
||||
"![Exercise 6a](exercise6_a.png)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"\n",
|
||||
"s = ['Cricket', 'Football', 'Hockey', 'F1']\n",
|
||||
"p = [15, 30, 45, 10]\n",
|
||||
"\n",
|
||||
"fig,ax = plt.subplots()\n",
|
||||
"ax.pie(p,labels=s)\n",
|
||||
"# ax.axis('equal')\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"nbgrader": {
|
||||
"grade": false,
|
||||
"grade_id": "cell-d16322e4cb78e72c",
|
||||
"locked": true,
|
||||
"schema_version": 3,
|
||||
"solution": false,
|
||||
"task": false
|
||||
},
|
||||
"tags": []
|
||||
},
|
||||
"source": [
|
||||
"# Contour plots\n",
|
||||
"\n",
|
||||
"Contour plots also called level plots are a tool for doing multivariate analysis and visualizing 3-D plots in 2-D space. If we consider X and Y as our variables we want to plot then the response Z will be plotted as slices on the X-Y plane due to which contours are sometimes referred as Z-slices or iso-response.\n",
|
||||
"\n",
|
||||
"Contour plots are widely used to visualize density, altitudes or heights of the mountain as well as in the meteorological department. Due to such wide usage matplotlib.pyplot provides a method contour to make it easy for us to draw contour plots."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"nbgrader": {
|
||||
"grade": false,
|
||||
"grade_id": "cell-75ecdb619bbc13d3",
|
||||
"locked": true,
|
||||
"schema_version": 3,
|
||||
"solution": false,
|
||||
"task": false
|
||||
},
|
||||
"tags": []
|
||||
},
|
||||
"source": [
|
||||
"## Exercise 7\n",
|
||||
"\n",
|
||||
"Make a contour plot of the equation $Z=X^2+Y^2$ by first creating a mesh grid between $x$ and $y$. The plot should look as follows:\n",
|
||||
"\n",
|
||||
"![Exercise 7a](exercise7_a.png)\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"x = np.arange(0,100)\n",
|
||||
"y = x*2\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"[X, Y] = np.meshgrid(x, y)\n",
|
||||
"fig, ax = plt.subplots(1, 1)\n",
|
||||
" \n",
|
||||
"Z = X**2 + Y**2 \n",
|
||||
"ax.contour(X, Y, Z)\n",
|
||||
"\n",
|
||||
"ax.set_title('Contour Plot')\n",
|
||||
"ax.set_xlabel('X')\n",
|
||||
"ax.set_ylabel('Y')\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.8.16"
|
||||
},
|
||||
"vscode": {
|
||||
"interpreter": {
|
||||
"hash": "23df9ff646ca1c5e2dfe7a3d7568c302b6a7972f96b6a2ba92f9d9e3e979b69c"
|
||||
}
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 4
|
||||
}
|
Before Width: | Height: | Size: 15 KiB |
Before Width: | Height: | Size: 21 KiB |
Before Width: | Height: | Size: 15 KiB |
Before Width: | Height: | Size: 31 KiB |
Before Width: | Height: | Size: 7.4 KiB |
Before Width: | Height: | Size: 70 KiB |
Before Width: | Height: | Size: 68 KiB |
Before Width: | Height: | Size: 96 KiB |
Before Width: | Height: | Size: 16 KiB |
Before Width: | Height: | Size: 30 KiB |
@ -1,850 +0,0 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "c850ea25-9bde-4feb-a1d0-056c5870d59e",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Regular Expressions (Regex)\n",
|
||||
"\n",
|
||||
"Wir schreiben das Jahr 1950 der Mathematiker __Stephen Cole Kleene__ erfand das Konzept der _Regulären Sprache_. Ein Konzept der theoretischen Informatik zum Beschreiben von syntaktischen Ausdrücken. Damit einhergehend lassen sich durch spezifische ausdrücke, den _Regular Expressions_, verschiedene Formen des _pattern matching_ durchführen. Eine der mit abstand wichtigensten Anwendungsfälle für _regual expressions_ ist das Kompilieren von Quellcode in Maschinensprache. Dabei werden ausdrücke wie _while_, _for_, _if_ etc. formalisiert und können einfacher in Übersetzt (Kompiliert) werden. \n",
|
||||
"\n",
|
||||
"Ein weiterer Nutzen von _regual expressions_ ist das _just-in-time compiling_ von dem auch Python als interpretierte Sprache gebrauch macht. Dabei wird der Quellcode zur Laufzeit für die Maschine übersetzt (meist nicht direkt der Quellcode, sondern eine zwischenstufe die als _Bytecode_ bezeichnet wird). Es wäre sonst nicht möglich so einfach Jupyter Notebooks zu verwenden.\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"Ein paar Fakten zu _regular expressions_:\n",
|
||||
"\n",
|
||||
"- _Regex_ findet sich in vielen Dialekten wieder. (vgl. [Regular Expression Engine Comparison](https://gist.github.com/CMCDragonkai/6c933f4a7d713ef712145c5eb94a1816))\n",
|
||||
"- Die Programmiersprache _Perl_ entstand aus einer Bibliothek von Henry Spencer zum nutzen von _Regex_ \n",
|
||||
"- Eine frei Nutzbare Seite (Achtung mit Werbung) zum testen und prüfen von Regulären Ausdrücken in verschiedenen Dialekten ist [Regex101](https://regex101.com/)\n",
|
||||
"- Jedes Unix(-ähnliche) System (Linux, MacOS, BSD, etc.) hat das Programm _grep (**G**lobal/**R**egular **E**xpression/**P**rint)_ zum analysieren von Datenströmen/Textdateien vorinstalliert.\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"<p><a href=\"https://commons.wikimedia.org/wiki/File:Kleene.jpg#/media/File:Kleene.jpg\"><img src=\"https://upload.wikimedia.org/wikipedia/commons/1/1c/Kleene.jpg\" alt=\"Kleene.jpg\" width=\"10%\"></a><br>By Konrad Jacobs, Erlangen, Copyright is MFO - Mathematisches Forschungsinstitut Oberwolfach,<a rel=\"nofollow\" class=\"external free\" href=\"https://opc.mfo.de/detail?photo_id=2122\">https://opc.mfo.de/detail?photo_id=2122</a>, <a href=\"https://creativecommons.org/licenses/by-sa/2.0/de/deed.en\" title=\"Creative Commons Attribution-Share Alike 2.0 de\">CC BY-SA 2.0 de</a>, <a href=\"https://commons.wikimedia.org/w/index.php?curid=12342617\">Link</a></p>"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "b689ee80",
|
||||
"metadata": {
|
||||
"nbgrader": {
|
||||
"grade": false,
|
||||
"grade_id": "cell-27269d9f8e03f3e9",
|
||||
"locked": true,
|
||||
"schema_version": 3,
|
||||
"solution": false,
|
||||
"task": false
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"## Introduction\n",
|
||||
"\n",
|
||||
"You can find _a lot_ of material on regular expressions (regex) online.\n",
|
||||
"Therefore, we will not repeat the background but focus on some practical exercises in this notebook. Some tutorials/useful links can be found below.\n",
|
||||
"\n",
|
||||
"The way that we need and use regular expressions is to describe patterns of characters to match in a given string.\n",
|
||||
"\n",
|
||||
"You can think of them as a string of characters, which describe a certain pattern, e.g., \"four numbers followed by a word of at least 5 characters\". \n",
|
||||
"This can then be used to test given strings/texts and match the pattern specified in the regex.\n",
|
||||
"This is done using the [Python Standard Library `re`](https://docs.python.org/3/library/re.html).\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"**Material on Regular Expressions:**\n",
|
||||
"\n",
|
||||
"- [RegEx Howto in Python](https://docs.python.org/3/howto/regex.html)\n",
|
||||
"- [RegEx Tutorial](https://www.regular-expressions.info/tutorial.html)\n",
|
||||
"- [Interactive RegEx Tutorial](https://regexone.com/)\n",
|
||||
"- [WikiBook on RegEx](https://en.wikibooks.org/wiki/Regular_Expressions)\n",
|
||||
"- [RegExr: Testing & Visualizing RegEx](https://regexr.com/)\n",
|
||||
"- [Debuggex: Visualization of individual regex as finite state machine](https://www.debuggex.com/)\n",
|
||||
"\n",
|
||||
"**Testing with Regular Expressions:**\n",
|
||||
"- [Regex101](https://regex101.com/)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"id": "8a5d3654",
|
||||
"metadata": {
|
||||
"nbgrader": {
|
||||
"grade": false,
|
||||
"grade_id": "cell-168430a9112ab605",
|
||||
"locked": true,
|
||||
"schema_version": 3,
|
||||
"solution": false,
|
||||
"task": false
|
||||
},
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import re"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "b6ccac77",
|
||||
"metadata": {
|
||||
"nbgrader": {
|
||||
"grade": false,
|
||||
"grade_id": "cell-4c79f2d5a1e62a04",
|
||||
"locked": true,
|
||||
"schema_version": 3,
|
||||
"solution": false,
|
||||
"task": false
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"## Example 1\n",
|
||||
"The regular expression `Hello [A-Z][a-z]+` specifies a pattern that begins with the literal string `Hello ` and is followed by a capital letter (specified by `[A-Z]`) and at least one small letter. (`[a-z]` describes the lowercase letters and `+` specifies that there is at least one of them)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"id": "7e25056b",
|
||||
"metadata": {
|
||||
"nbgrader": {
|
||||
"grade": false,
|
||||
"grade_id": "cell-98f2d91954c191a3",
|
||||
"locked": true,
|
||||
"schema_version": 3,
|
||||
"solution": false,
|
||||
"task": false
|
||||
},
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Testing the string: 'Hello World'\n",
|
||||
"Found pattern at characters: 0 to 11\n",
|
||||
"---------------------------------------------\n",
|
||||
"Testing the string: 'Hello You!'\n",
|
||||
"Found pattern at characters: 0 to 9\n",
|
||||
"---------------------------------------------\n",
|
||||
"Testing the string: 'This does not match the pattern...'\n",
|
||||
"Pattern not found in string.\n",
|
||||
"---------------------------------------------\n",
|
||||
"Testing the string: 'We can also have the Hello World pattern somewhere within the string.'\n",
|
||||
"Found pattern at characters: 21 to 32\n",
|
||||
"---------------------------------------------\n",
|
||||
"Testing the string: 'Hello world does not match'\n",
|
||||
"Pattern not found in string.\n",
|
||||
"---------------------------------------------\n",
|
||||
"Testing the string: 'Hello W does not match either'\n",
|
||||
"Pattern not found in string.\n",
|
||||
"---------------------------------------------\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"example_re = r'Hello [A-Z][a-z]+'\n",
|
||||
"test_strings = ['Hello World',\n",
|
||||
" 'Hello You!',\n",
|
||||
" 'This does not match the pattern...',\n",
|
||||
" 'We can also have the Hello World pattern somewhere within the string.',\n",
|
||||
" 'Hello world does not match',\n",
|
||||
" 'Hello W does not match either']\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"for test_word in test_strings:\n",
|
||||
" print(f\"Testing the string: '{test_word}'\")\n",
|
||||
" match_object = re.search(example_re, test_word)\n",
|
||||
" if match_object:\n",
|
||||
" print(f\"Found pattern at characters: {match_object.span()[0]:d} to {match_object.span()[1]:d}\")\n",
|
||||
" else:\n",
|
||||
" print(\"Pattern not found in string.\")\n",
|
||||
" print(\"-\"*45)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "5ec979b2",
|
||||
"metadata": {
|
||||
"nbgrader": {
|
||||
"grade": false,
|
||||
"grade_id": "cell-aca8488169bc0df9",
|
||||
"locked": true,
|
||||
"schema_version": 3,
|
||||
"solution": false,
|
||||
"task": false
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"_Note:_ Since regex often use special characters like backslash `\\`, it is helpful to define them in Python as raw strings, i.e., using a preceding `r` (see `example_re` above)."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "820c31ae",
|
||||
"metadata": {
|
||||
"nbgrader": {
|
||||
"grade": false,
|
||||
"grade_id": "cell-4d3281e8922cd534",
|
||||
"locked": true,
|
||||
"schema_version": 3,
|
||||
"solution": false,
|
||||
"task": false
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"## Task 1\n",
|
||||
"\n",
|
||||
"Write a regular expression `r1` which matches the following words:\n",
|
||||
"- hello\n",
|
||||
"- yellow\n",
|
||||
"- jello"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"id": "e7e426b0",
|
||||
"metadata": {
|
||||
"nbgrader": {
|
||||
"grade": false,
|
||||
"grade_id": "cell-c48986402655ab08",
|
||||
"locked": false,
|
||||
"schema_version": 3,
|
||||
"solution": true,
|
||||
"task": false
|
||||
},
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"### BEGIN SOLUTION ###\n",
|
||||
"r1 = r'.*ello.*'\n",
|
||||
"### END SOLUTION"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"id": "223fa54c",
|
||||
"metadata": {
|
||||
"nbgrader": {
|
||||
"grade": true,
|
||||
"grade_id": "cell-0a761cfdabd44f1b",
|
||||
"locked": true,
|
||||
"points": 1,
|
||||
"schema_version": 3,
|
||||
"solution": false,
|
||||
"task": false
|
||||
},
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"<re.Match object; span=(0, 5), match='hello'>\n",
|
||||
"<re.Match object; span=(0, 6), match='yellow'>\n",
|
||||
"<re.Match object; span=(0, 5), match='jello'>\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# Test Cell\n",
|
||||
"\n",
|
||||
"test_words = ['hello', 'yellow', 'jello']\n",
|
||||
"for _word in test_words:\n",
|
||||
" match = re.match(r1, _word)\n",
|
||||
" print(match)\n",
|
||||
" if match is None: assert False\n",
|
||||
" assert match[0] == _word"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "c3086449",
|
||||
"metadata": {
|
||||
"nbgrader": {
|
||||
"grade": false,
|
||||
"grade_id": "cell-bea454dd22c7499a",
|
||||
"locked": true,
|
||||
"schema_version": 3,
|
||||
"solution": false,
|
||||
"task": false
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"## Example 2\n",
|
||||
"\n",
|
||||
"In the first example, we have use the `[A-Z]` and `[a-z]` patterns to specify capital and lowercase letters, respectively.\n",
|
||||
"There are a lot more of such predefined patterns, e.g., `[0-9]` or `\\d` for matching a (single-digit) number.\n",
|
||||
"\n",
|
||||
"A list of these special characters can be found in the [`re` documentation](https://docs.python.org/3/library/re.html#regular-expression-syntax).\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"The following regex can be used to match a word with at least 3 letters (both capital and lowercase are accepted), followed by a two-digit number, a comma, and a four-digit number where the first number is either a one or a two."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"id": "5a02b00a",
|
||||
"metadata": {
|
||||
"nbgrader": {
|
||||
"grade": false,
|
||||
"grade_id": "cell-1a01734fc48cc488",
|
||||
"locked": true,
|
||||
"schema_version": 3,
|
||||
"solution": false,
|
||||
"task": false
|
||||
},
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Testing the string: 'November 21, 2022'\n",
|
||||
"Found pattern at characters: 0 to 17\n",
|
||||
"---------------------------------------------\n",
|
||||
"Testing the string: 'Jan 01, 1970'\n",
|
||||
"Found pattern at characters: 0 to 12\n",
|
||||
"---------------------------------------------\n",
|
||||
"Testing the string: 'JuNE 45, 4521'\n",
|
||||
"Pattern not found in string.\n",
|
||||
"---------------------------------------------\n",
|
||||
"Testing the string: 'Abc 1, 2020'\n",
|
||||
"Pattern not found in string.\n",
|
||||
"---------------------------------------------\n",
|
||||
"Testing the string: 'July 02, 90'\n",
|
||||
"Pattern not found in string.\n",
|
||||
"---------------------------------------------\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"example_re2 = r'[A-Za-z]{3,} \\d{2}, [12]\\d{3}'\n",
|
||||
"\n",
|
||||
"test_strings = ['November 21, 2022',\n",
|
||||
" 'Jan 01, 1970',\n",
|
||||
" 'JuNE 45, 4521',\n",
|
||||
" 'Abc 1, 2020',\n",
|
||||
" 'July 02, 90']\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"for test_word in test_strings:\n",
|
||||
" print(f\"Testing the string: '{test_word}'\")\n",
|
||||
" match_object = re.search(example_re2, test_word)\n",
|
||||
" if match_object:\n",
|
||||
" print(f\"Found pattern at characters: {match_object.span()[0]:d} to {match_object.span()[1]:d}\")\n",
|
||||
" else:\n",
|
||||
" print(\"Pattern not found in string.\")\n",
|
||||
" print(\"-\"*45)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "b565244d",
|
||||
"metadata": {
|
||||
"nbgrader": {
|
||||
"grade": false,
|
||||
"grade_id": "cell-0abe35e63e18f0d9",
|
||||
"locked": true,
|
||||
"schema_version": 3,
|
||||
"solution": false,
|
||||
"task": false
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"## Task 2\n",
|
||||
"\n",
|
||||
"Write a regular expression `r2` that only matches dates in the ISO format `YYYY-MM-DD`.\n",
|
||||
"It should _only_ match a string, if the whole string is a date. If the date is only part of the string, it should *not* match it.\n",
|
||||
"\n",
|
||||
"_Hint:_ You can use `(a[0-9]|b[01])` to specify the pattern that matches either an `a` followed by a single digit **or** a `b` followed by either `0` or `1`."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"id": "1e2bb2bd",
|
||||
"metadata": {
|
||||
"nbgrader": {
|
||||
"grade": false,
|
||||
"grade_id": "cell-c264d2e9cac73db0",
|
||||
"locked": false,
|
||||
"schema_version": 3,
|
||||
"solution": true,
|
||||
"task": false
|
||||
},
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"### BEGIN SOLUTION\n",
|
||||
"r2 = r'^(\\d{4})-(0[1-9]|1[012])-(0[1-9]|[12][0-9]|3[01])$'\n",
|
||||
"### END SOLUTION"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"id": "5bbd62f5",
|
||||
"metadata": {
|
||||
"nbgrader": {
|
||||
"grade": true,
|
||||
"grade_id": "cell-c80282e7adcccb6a",
|
||||
"locked": true,
|
||||
"points": 1,
|
||||
"schema_version": 3,
|
||||
"solution": false,
|
||||
"task": false
|
||||
},
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"<re.Match object; span=(0, 10), match='1970-01-01'>\n",
|
||||
"<re.Match object; span=(0, 10), match='1999-12-31'>\n",
|
||||
"<re.Match object; span=(0, 10), match='2000-02-28'>\n",
|
||||
"<re.Match object; span=(0, 10), match='2022-12-09'>\n",
|
||||
"<re.Match object; span=(0, 10), match='4250-09-10'>\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# Test Cell\n",
|
||||
"\n",
|
||||
"# The following strings should be matched\n",
|
||||
"dates = [\"1970-01-01\", \"1999-12-31\", \"2000-02-28\", \"2022-12-09\", \"4250-09-10\"]\n",
|
||||
"for _date in dates:\n",
|
||||
" match = re.match(r2, _date)\n",
|
||||
" print(match)\n",
|
||||
" if match is None: assert False\n",
|
||||
" assert match[0] == _date"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 10,
|
||||
"id": "0d8e4b98",
|
||||
"metadata": {
|
||||
"nbgrader": {
|
||||
"grade": true,
|
||||
"grade_id": "cell-e46e8f78178eb2b7",
|
||||
"locked": true,
|
||||
"points": 1,
|
||||
"schema_version": 3,
|
||||
"solution": false,
|
||||
"task": false
|
||||
},
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"None\n",
|
||||
"None\n",
|
||||
"None\n",
|
||||
"None\n",
|
||||
"None\n",
|
||||
"None\n",
|
||||
"None\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# Test Cell\n",
|
||||
"\n",
|
||||
"# The following strings should not be matched\n",
|
||||
"no_dates = [\"1970-01-32\", \"abcd-12-31\", \"2000/02/28\", \"2022-14-20\", \"2002.12.02\", \"1234-2-1\", \"77-09-02\"]\n",
|
||||
"for _date in no_dates:\n",
|
||||
" match = re.match(r2, _date)\n",
|
||||
" print(match)\n",
|
||||
" if match is not None: assert False"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 11,
|
||||
"id": "b72e49ac",
|
||||
"metadata": {
|
||||
"nbgrader": {
|
||||
"grade": true,
|
||||
"grade_id": "cell-48f63facb72e517a",
|
||||
"locked": true,
|
||||
"points": 1,
|
||||
"schema_version": 3,
|
||||
"solution": false,
|
||||
"task": false
|
||||
},
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"None\n",
|
||||
"None\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# Test Cell\n",
|
||||
"\n",
|
||||
"# The following strings should not be matched\n",
|
||||
"no_match = [\"This text contains the date 1999-12-31 but it should not be matched.\",\n",
|
||||
" \"2020-02-20 is a date in the beginning of the string\"]\n",
|
||||
"for _text in no_match:\n",
|
||||
" match = re.match(r2, _text)\n",
|
||||
" print(match)\n",
|
||||
" if match is not None: assert False"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "ce239065",
|
||||
"metadata": {
|
||||
"nbgrader": {
|
||||
"grade": false,
|
||||
"grade_id": "cell-31d99fd79761847d",
|
||||
"locked": true,
|
||||
"schema_version": 3,
|
||||
"solution": false,
|
||||
"task": false
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"## Example 3\n",
|
||||
"\n",
|
||||
"You can save parts of the found pattern in a group to have access to it later.\n",
|
||||
"\n",
|
||||
"In the following example, we modify the regex from [Example 2](#Example-2) to capture the individual parts into groups."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 12,
|
||||
"id": "89ba4f51",
|
||||
"metadata": {
|
||||
"nbgrader": {
|
||||
"grade": false,
|
||||
"grade_id": "cell-7d320972e47ae922",
|
||||
"locked": true,
|
||||
"schema_version": 3,
|
||||
"solution": false,
|
||||
"task": false
|
||||
},
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"('November', '21', '2022')\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"example_re3 = r'([A-Za-z]{3,}) (\\d{2}), ([12]\\d{3})'\n",
|
||||
"\n",
|
||||
"test_string = 'November 21, 2022'\n",
|
||||
"match = re.search(example_re3, test_string)\n",
|
||||
"print(match.groups())"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "393ff9c6",
|
||||
"metadata": {
|
||||
"nbgrader": {
|
||||
"grade": false,
|
||||
"grade_id": "cell-68cbff25c972809f",
|
||||
"locked": true,
|
||||
"schema_version": 3,
|
||||
"solution": false,
|
||||
"task": false
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"## Task 3\n",
|
||||
"\n",
|
||||
"Write a regular expression `r3` which matches text between `<li>...</li>` tags and adds the found text to a group. This should be the only capturing group!\n",
|
||||
"\n",
|
||||
"_Hint:_ You might want to check how to define non-capturing groups and non-greedy matching."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 13,
|
||||
"id": "c93ee04d",
|
||||
"metadata": {
|
||||
"nbgrader": {
|
||||
"grade": false,
|
||||
"grade_id": "cell-420f01248c7eddeb",
|
||||
"locked": false,
|
||||
"schema_version": 3,
|
||||
"solution": true,
|
||||
"task": false
|
||||
},
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"### BEGIN SOLUTION\n",
|
||||
"r3 = r'<li>((?:.|\\n)*?)</li>'\n",
|
||||
"### END SOLUTION"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 14,
|
||||
"id": "37681e3d",
|
||||
"metadata": {
|
||||
"nbgrader": {
|
||||
"grade": true,
|
||||
"grade_id": "cell-488cd60d5bed2019",
|
||||
"locked": true,
|
||||
"points": 2,
|
||||
"schema_version": 3,
|
||||
"solution": false,
|
||||
"task": false
|
||||
},
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"['Item 1', '\\nItem 2', '\\n Item 3\\n ']\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# Test Cell\n",
|
||||
"\n",
|
||||
"test_html = \"\"\"\n",
|
||||
"<html>\n",
|
||||
" <head>\n",
|
||||
" <title>Test HTML</title>\n",
|
||||
" </head>\n",
|
||||
" <body>\n",
|
||||
" <h1>Heading 1</h1>\n",
|
||||
" <ol>\n",
|
||||
" <li>Item 1</li>\n",
|
||||
" <li>\n",
|
||||
"Item 2</li>\n",
|
||||
" <li>\n",
|
||||
" Item 3\n",
|
||||
" </li>\n",
|
||||
" </ol>\n",
|
||||
" </body>\n",
|
||||
"</html>\n",
|
||||
"\"\"\"\n",
|
||||
"\n",
|
||||
"matches = re.findall(r3, test_html)\n",
|
||||
"print(matches)\n",
|
||||
"assert len(matches) == 3\n",
|
||||
"assert matches == ['Item 1', '\\nItem 2', '\\n Item 3\\n ']"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "4370f245",
|
||||
"metadata": {
|
||||
"nbgrader": {
|
||||
"grade": false,
|
||||
"grade_id": "cell-53152b78922af0b1",
|
||||
"locked": true,
|
||||
"schema_version": 3,
|
||||
"solution": false,
|
||||
"task": false
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"## Task 4\n",
|
||||
"\n",
|
||||
"Write a regular expression `r4` to find all words in a string that are acronmyms, i.e., written in all capital letters, and all words that have a capital letter in them which is not at the first position.\n",
|
||||
"\n",
|
||||
"Next, write a function `shield_acronyms` that uses this regular expression and adds curly brackets `{...}` around the found words and returns a new string.\n",
|
||||
"\n",
|
||||
"_Hint:_ You can use the [`re.sub` function](https://docs.python.org/3/library/re.html#re.sub) for this task."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 15,
|
||||
"id": "ed6b99f1",
|
||||
"metadata": {
|
||||
"nbgrader": {
|
||||
"grade": false,
|
||||
"grade_id": "cell-545bc5786ee8e947",
|
||||
"locked": false,
|
||||
"schema_version": 3,
|
||||
"solution": true,
|
||||
"task": false
|
||||
},
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Define r4 here\n",
|
||||
"### BEGIN SOLUTION\n",
|
||||
"r4 = r'([0-9A-Z]+\\b|[a-zA-Z]+[A-Z0-9]+[a-zA-Z\\b]*)'\n",
|
||||
"### END SOLUTION"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 16,
|
||||
"id": "504cd6d3",
|
||||
"metadata": {
|
||||
"nbgrader": {
|
||||
"grade": true,
|
||||
"grade_id": "cell-900922b2243d5a55",
|
||||
"locked": true,
|
||||
"points": 1,
|
||||
"schema_version": 3,
|
||||
"solution": false,
|
||||
"task": false
|
||||
},
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"['MIMO']\n",
|
||||
"['M2M']\n",
|
||||
"['IN', 'mmWave']\n",
|
||||
"['5G', 'SHIELded']\n",
|
||||
"[]\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# Test Cell\n",
|
||||
"\n",
|
||||
"test_words = [(\"MIMO\", [\"MIMO\"]),\n",
|
||||
" (\"M2M\", [\"M2M\"]),\n",
|
||||
" (r\"Acro IN mmWave Title\", [\"IN\", \"mmWave\"]),\n",
|
||||
" (r\"5G should be SHIELded\", [\"5G\", \"SHIELded\"]),\n",
|
||||
" (r\"Regular title with Names\", []),\n",
|
||||
" ]\n",
|
||||
"for text, matches in test_words:\n",
|
||||
" result = re.findall(r4, text)\n",
|
||||
" print(result)\n",
|
||||
" assert result == matches"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 17,
|
||||
"id": "f955d228",
|
||||
"metadata": {
|
||||
"nbgrader": {
|
||||
"grade": false,
|
||||
"grade_id": "cell-2c36d0ef19bac550",
|
||||
"locked": false,
|
||||
"schema_version": 3,
|
||||
"solution": true,
|
||||
"task": false
|
||||
},
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def shield_acronyms(text: str) -> str:\n",
|
||||
" ### BEGIN SOLUTION\n",
|
||||
" r4 = r4 = r'([0-9A-Z]+\\b|[a-zA-Z]+[A-Z0-9]+[a-zA-Z\\b]*)'\n",
|
||||
" new_text = re.sub(r4, r'{\\g<0>}', text)\n",
|
||||
" return new_text\n",
|
||||
" ### END SOLUTION"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 18,
|
||||
"id": "3b71b683",
|
||||
"metadata": {
|
||||
"nbgrader": {
|
||||
"grade": true,
|
||||
"grade_id": "cell-550110e95fccc717",
|
||||
"locked": true,
|
||||
"points": 2,
|
||||
"schema_version": 3,
|
||||
"solution": false,
|
||||
"task": false
|
||||
},
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"{MIMO}\n",
|
||||
"{M2M}\n",
|
||||
"Acro {IN} {mmWave} Title\n",
|
||||
"{5G} should be {SHIELded}\n",
|
||||
"Regular title with Names\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# Test Cell\n",
|
||||
"\n",
|
||||
"test_words = [(\"MIMO\", r\"{MIMO}\"),\n",
|
||||
" (\"M2M\", r\"{M2M}\"),\n",
|
||||
" (r\"Acro IN mmWave Title\", r\"Acro {IN} {mmWave} Title\"),\n",
|
||||
" (r\"5G should be SHIELded\", r\"{5G} should be {SHIELded}\"),\n",
|
||||
" (r\"Regular title with Names\", r'Regular title with Names'),\n",
|
||||
" ]\n",
|
||||
"for text, expected in test_words:\n",
|
||||
" result = shield_acronyms(text)\n",
|
||||
" print(result)\n",
|
||||
" assert result == expected"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "41222440-923d-44a4-8dc7-d7a6309d4e0a",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"celltoolbar": "Create Assignment",
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.8.16"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
@ -1,171 +0,0 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "8f7ee9ed",
|
||||
"metadata": {
|
||||
"nbgrader": {
|
||||
"grade": false,
|
||||
"grade_id": "cell-fd19a00f47ad1a34",
|
||||
"locked": true,
|
||||
"schema_version": 3,
|
||||
"solution": false,
|
||||
"task": false
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"- [Beautiful Soup Documentation](https://beautiful-soup-4.readthedocs.io/en/latest/)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"id": "ebaad76f",
|
||||
"metadata": {
|
||||
"nbgrader": {
|
||||
"grade": false,
|
||||
"grade_id": "cell-9138585fc343d8a7",
|
||||
"locked": true,
|
||||
"schema_version": 3,
|
||||
"solution": false,
|
||||
"task": false
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from bs4 import BeautifulSoup"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "1336423a",
|
||||
"metadata": {
|
||||
"nbgrader": {
|
||||
"grade": false,
|
||||
"grade_id": "cell-235041934d89cb33",
|
||||
"locked": true,
|
||||
"schema_version": 3,
|
||||
"solution": false,
|
||||
"task": false
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"## Example of Parsing a Website"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"id": "8bf54e3b",
|
||||
"metadata": {
|
||||
"nbgrader": {
|
||||
"grade": false,
|
||||
"grade_id": "cell-c6761d82e17018f0",
|
||||
"locked": true,
|
||||
"schema_version": 3,
|
||||
"solution": false,
|
||||
"task": false
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"with open(\"example.html\") as html_file:\n",
|
||||
" soup = BeautifulSoup(html_file)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 13,
|
||||
"id": "14566e25",
|
||||
"metadata": {
|
||||
"nbgrader": {
|
||||
"grade": false,
|
||||
"grade_id": "cell-93b2d5726c5469a8",
|
||||
"locked": true,
|
||||
"schema_version": 3,
|
||||
"solution": false,
|
||||
"task": false
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"<title>Test HTML</title>\n",
|
||||
"Test HTML\n",
|
||||
"------------------------------\n",
|
||||
"Print all list elements on the website:\n",
|
||||
"Item 1\n",
|
||||
"\n",
|
||||
"Item 2\n",
|
||||
"\n",
|
||||
" Item 3\n",
|
||||
" \n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"print(soup.title)\n",
|
||||
"print(soup.title.get_text())\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"print(\"-\"*30)\n",
|
||||
"print(\"Print all list elements on the website:\")\n",
|
||||
"\n",
|
||||
"li = soup.find_all(\"li\")\n",
|
||||
"for element in li:\n",
|
||||
" print(element.get_text()) # you can use .strip() to get rid of trailing whitespace"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 14,
|
||||
"id": "d64b13b5",
|
||||
"metadata": {
|
||||
"nbgrader": {
|
||||
"grade": false,
|
||||
"grade_id": "cell-3a99db5db1577717",
|
||||
"locked": true,
|
||||
"schema_version": 3,
|
||||
"solution": false,
|
||||
"task": false
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import requests"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "4bdf24a4",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"celltoolbar": "Create Assignment",
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.8"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
@ -1,16 +0,0 @@
|
||||
<html>
|
||||
<head>
|
||||
<title>Test HTML</title>
|
||||
</head>
|
||||
<body>
|
||||
<h1>Heading 1</h1>
|
||||
<ol class="mylist">
|
||||
<li>Item 1</li>
|
||||
<li>
|
||||
Item 2</li>
|
||||
<li>
|
||||
Item 3
|
||||
</li>
|
||||
</ol>
|
||||
</body>
|
||||
</html>
|
@ -1,26 +0,0 @@
|
||||
Age,Sex,Scale Python Exp,Course,Has Voice Assistent Contact,Voice Assistent,Scale Study Satisfaction,Uses Smartphone,Which Smartphone,Has Computer,Which OS,Scale Programming Exp
|
||||
22,Männlich,4,Medienwissenschaften,Ja,Apple Siri,4,Ja,Apple,Ja,Mac OS,2
|
||||
26,Weiblich,3,Medienwissenschaften,Ja,Amazon Alexa,2,Ja,Xiaomi,Ja,Windows 10,3
|
||||
21,Männlich,3,Medienwissenschaften,Ja,Google Now,4,Ja,Sonstige,Ja,Windows 10,3
|
||||
26,Weiblich,4,Medienwissenschaften,Ja,Apple Siri,4,Ja,Samsung,Ja,Windows 10,2
|
||||
24,Weiblich,4,Psychologie,Nein,,4,Ja,Apple,Ja,Windows 11,3
|
||||
23,Männlich,3,Medienwissenschaften,Ja,Amazon Alexa,4,Ja,Samsung,Ja,Windows 10,3
|
||||
21,Männlich,3,Medienwissenschaften,Ja,Amazon Alexa,4,Ja,Samsung,Ja,Windows 10,2
|
||||
22,Weiblich,4,Medienwissenschaften,Nein,,3,Ja,Samsung,Ja,Windows 10,2
|
||||
19,Weiblich,4,Medienwissenschaften,Ja,Apple Siri,3,Ja,Apple,Ja,Windows 11,2
|
||||
21,Weiblich,4,Medienwissenschaften,Ja,Google Now,3,Ja,Samsung,Ja,Windows 10,2
|
||||
20,Weiblich,4,Medienwissenschaften,Ja,Apple Siri,4,Ja,Apple,Ja,Mac OS,2
|
||||
21,Weiblich,4,Medienwissenschaften,Nein,Apple Siri,4,Ja,Apple,Ja,Mac OS,2
|
||||
21,Weiblich,4,Medienwissenschaften,Ja,Amazon Alexa,3,Ja,Samsung,Ja,Windows 11,4
|
||||
20,Männlich,4,Medienwissenschaften,Nein,,3,Ja,Samsung,Ja,Windows 10,3
|
||||
22,Weiblich,4,Medienwissenschaften,Ja,Apple Siri,2,Ja,Apple,Ja,Windows 11,2
|
||||
22,Weiblich,4,Medienwissenschaften,Ja,Amazon Alexa,3,Ja,Apple,Ja,Mac OS,1
|
||||
21,Weiblich,4,Medienwissenschaften,Nein,,3,Ja,Apple,Ja,Mac OS,4
|
||||
19,Männlich,3,Medienwissenschaften,Ja,Apple Siri,4,Ja,Apple,Ja,Windows 10,2
|
||||
30,Weiblich,3,Medienwissenschaften,Ja,Apple Siri,3,Ja,Apple,Ja,Mac OS,2
|
||||
27,Weiblich,4,Medienwissenschaften,Ja,Apple Siri,3,Ja,Apple,Ja,Windows 11,2
|
||||
22,Weiblich,5,Medienwissenschaften,Ja,Amazon Alexa,5,Ja,Xiaomi,Ja,Linux,1
|
||||
21,Männlich,5,Medienwissenschaften,Ja,Apple Siri,4,Ja,Apple,Ja,Windows 10,2
|
||||
30,Männlich,4,Medienwissenschaften,Ja,Amazon Alexa,3,Ja,Samsung,Ja,Windows 11,2
|
||||
23,Weiblich,5,Medienwissenschaften,Ja,Apple Siri,2,Ja,Apple,Ja,Mac OS,1
|
||||
22,Weiblich,3,Medienwissenschaften,Ja,Apple Siri,4,Ja,Apple,Ja,Mac OS,3
|
|