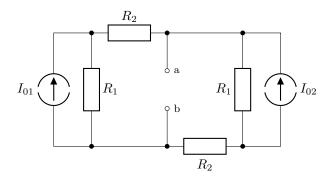
• Aufgabe 1 (6 Punkte)

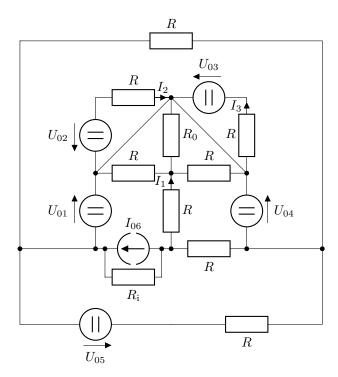
Gegeben ist nachfolgendes Netzwerk mit dem Widerständen R_1 und R_2 und den Stromquellen $I_{01} = I_{02} = I_0$, sowie den Klemmen a und b.



- a) Bestimmen Sie den Innenwiderstand $R_{\rm i}$ zwischen den Klemmen a und b.
- b) Berechnen Sie den Kurzschlussstrom $I_{\rm K}$.
- c) Berechnen Sie die Leerlaufspannung $U_{\rm L}$.
- d) Skizzieren Sie die Ersatzstromquelle für den Fall, dass die Schaltung an den Klemmen a und b mit dem Ohmschen Widerstand $R_{\rm Last}$ belastet wird.
- e) Die Spannung über dem Lastwiderstand R_{Last} beträgt $U_{\text{Last}} = 10\,\text{V}$, der Strom I_0 beträgt $20\,\text{mA}$ und es gilt $2R_1 = R_2$. Wie groß sind die Widerstände R_1 und R_2 bei Leistungsanpassung?

• Aufgabe 2 (10 Punkte)

Das nachfolgende Netzwerk mit den Ohmschen Widerständen $R = R_i$ und $R_0 = 0$, den Spannungsquellen U_{01} , U_{02} , U_{03} , U_{04} , U_{05} und der Stromquelle I_{06} ist mit Hilfe des Maschenstromverfahrens zu analysieren.



- a) Geben Sie zunächst einen formelmäßigen Zusammenhang für die Ströme \mathcal{I}_2 und \mathcal{I}_3 an.
- b) Wandeln Sie die Stromquelle I_{06} mit ihrem Innenwiderstand R_i in eine geeignete Spannungsquelle mit der Quellenspannung U_{06} um. Geben Sie den Wert und die Pfeilrichtung von U_{06} an. Vereinfachen Sie das Netzwerk geeignet (beachten Sie dabei den Widerstand $R_0 = 0$).
- c) Skizzieren Sie für das Netzwerk einen zusammenhängenden Graphen und kennzeichnen Sie darin einen vollständigen Baum.
- d) Berechnen Sie mit Hilfe von Aufgabenteil c) die Anzahl der unabhängigen Maschen formelmäßig. Definieren Sie für jede der Maschen einen Maschenstrom $\mathring{I}_1, \mathring{I}_2, \ldots$ mit eindeutiger Pfeilrichtung.
- e) Stellen Sie das Gleichungssystem zur Berechnung der Maschenströme auf.
- f) Geben Sie den Strom I_1 in Abhängigkeit Ihrer definierten Maschenströme I_1, I_2, \ldots und der gegebenen Größen an.

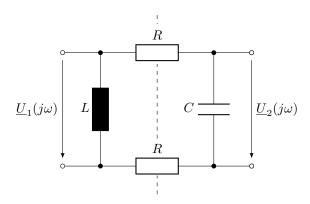
Gehen Sie im Folgenden davon aus, dass folgendes Gleichungssystem gegeben sei:

$$\begin{pmatrix} R_1 + R_2 + R_3 & -R_1 \\ -R_1 & R_1 + R_4 + R_5 \end{pmatrix} \cdot \begin{pmatrix} \mathring{I}_1 \\ \mathring{I}_2 \end{pmatrix} = \begin{pmatrix} U_{03} \\ (I_{01} + I_{02})R_i - U_{03} \end{pmatrix}$$
(1)

g) Lösen Sie das Gleichungssystem nach \mathring{I}_1 und \mathring{I}_2 auf und berechnen sie die Werte zahlenmäßig. Es gilt $R_1=R,\ R_2=2R,\ R_3=3R,\ R_4=4R,\ R_5=5R$ und $R_i=R$ mit $R=1\,\mathrm{k}\Omega$ sowie $I_{01}=I_{02}=50\,\mathrm{mA}$ und $U_{03}=10\,\mathrm{V}$.

 $\bullet \ \, Aufgabe \ 3 \qquad \qquad (9 \ Punkte)$

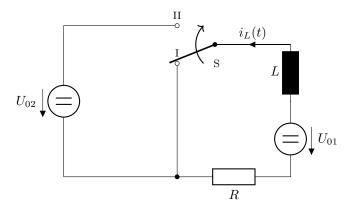
Gegeben ist der nachfolgende Vierpol mit der Eingangsspannung $\underline{U}_1(j\omega)$, der Ausgangsspannung $\underline{U}_2(j\omega)$, der Kapazität C, der Induktivität L sowie den Ohmschen Widerständen R.



- a) Berechnen Sie den Frequenzgang $\underline{H}(j\omega)=\frac{\underline{U}_2(j\omega)}{\underline{U}_1(j\omega)}$ des Vierpols.
- b) Geben Sie den Betrag $|\underline{H}(j\omega)|$ und die Phase $\varphi(j\omega)$ des Frequenzgangs an.
- c) Berechnen Sie die Werte des Betrags und der Phase für $\omega = 0$ und $\omega \to \infty$. Welches Übertragungsverhalten hat der Vierpol?
- d) Für die Grenzfrequenz ω_g gilt $|\underline{H}(j\omega_g)| = \frac{\underline{H}_{\max}}{\sqrt{2}}$. Wie groß ist ω_g in Abhängigkeit der gegebenen Größen? Welchen Wert hat der Phasengang des Vierpols bei der Frequenz ω_g ?
- e) Skizzieren Sie den Betrags- und Phasengang unter Angabe charakteristischer Werte. Achten Sie dabei auf eine vollständige Achsenbeschriftung.
- f) Geben Sie die Werte des Betrags $|\underline{H}'(j\omega)|$ für $\omega=0$ und $\omega\to\infty$ an, wenn der Vierpol an seiner vertikalen Achse (gestrichelte Linie) gespiegelt wird (d.h. Ein- und Ausgangsspannung sind vertauscht).

• Aufgabe 4 (9 Punkte)

Gegeben ist ein Netzwerk mit dem Schalter S, dem Ohmschen Widerstand R, der Induktivität L und den Gleichspannungsquellen U_{01} und U_{02} . Für Zeiten t < 0 ist Schalter S in Stellung I. Die Schaltung befindet sich im eingeschwungenen Zustand.



Zum Zeitpunkt t = 0 wird der Schalter S in Stellung II gebracht:

- a) Bestimmen Sie den Wert des Stroms $i_L(t)$ an der Spule zu den Zeitpunkten t = 0- und t = 0+ (Anfangsbedingung).
- b) Zeichnen Sie das vollständige LAPLACE-Ersatzschaltbild der Schaltung mit allen relevanten Größen für Zeiten $t \ge 0$ (Schalter S in Stellung II).
- c) Berechnen Sie die LAPLACE-Transformierte $\underline{I}_L(s)$ des Stroms $i_L(t)$ für Zeiten $t \geq 0$ und vereinfachen Sie auf geeignete Weise.
- d) Geben Sie $i_L(t)$ als inverse LAPLACE-Transformierte von $\underline{I}_L(s)$ unter Nutzung der Korrespondenztabelle für die LAPLACE-Transformation an.

Die Quellenspannungen $U_{01}=5\,\mathrm{V}$ und $U_{02}=12\,\mathrm{V}$, die Induktivität $L=9.276\,\mathrm{H}$, sowie der Widerstand $R=500\,\Omega$ sind gegeben.

- e) Zu welchem Zeitpunkt t_0 ist der Strom in der Spule $i_L(t_0) = 0$?
- f) Skizzieren die den Verlauf des Stroms $i_L(t)$ in Abhängigkeit von der Zeit. Kennzeichnen Sie charakteristische Werte.

Zeitbereich $(t \ge 0) \circ lacktriangle$ Bildbereich		Eigenschaft	Zeitbereich ⊶ Bildbereich	
$\delta(t) \cdot \sec^{-1}$ (Dirac-Stoβ)	1	Transformation	$u(t) = \frac{1}{2\pi i} \int_{c-j\infty}^{c+j\infty} \underline{U}(s)e^{st}ds$	$\underline{U}(s) = \int_{0+}^{\infty} u(t)e^{-st}dt$
1 (Sprung)	$\left \frac{1}{a} \right $	u(t) rein reell	$u(t) = u^*(t)$	$\underline{U}(s) = \underline{U}^*(s^*)$
t^n	n!	Zeit-Verschiebung	$u(t-t_0)$	$\underline{U}(s) \cdot e^{-st_0}$
	$\overline{s^{n+1}}$	Frequenz-Verschiebung	$u(t) \cdot e^{-ct}$	$\underline{U}(s+c)$
e^{-ct}	1	Zeit- & Frequenz-Skalierung	$u(c \cdot t)$	$\frac{1}{ c } \cdot \underline{U}(\frac{s}{c}) \ c \in \mathbb{R}, c > 0$
$\frac{1}{(n-1)!}t^{n-1}e^{-ct}$	$\begin{array}{c c} s+c \\ \hline 1 \\ \hline \end{array}$	Differentiation	$\left \frac{du(t)}{t} \right $	$s\underline{U}(s) - u(0+)$
$\frac{(n-1)!}{1-e^{-ct}}$	$(s+c)^n$	Integration	$\int\limits_0^t u(au)d au$	$\frac{1}{s}\mathfrak{L}\{u(t)\} + \frac{u(0+)}{s}$
1-6	s(s+c)	Überlagerung	$c_1 \cdot u_1(t) + c_2 \cdot u_2(t)$	$c_1 \cdot \underline{U}_1(s) + c_2 \cdot \underline{U}_2(s)$
$\frac{1}{c_2-c_1}(e^{-c_1t}-e^{-c_2t})$	$\left \frac{1}{(z+z)(z+z)} \right $	Faltung	u(t) * h(t)	$\underline{U}(s) \cdot \underline{H}(s)$
	$(s+c_1)(s+c_2)$	Anfangswerttheorem	$\lim_{t \to 0+} u(t)$	$\lim_{s \to \infty} s \underline{U}(s)$
$\frac{1}{c_2 - c_1} \left(-c_1 e^{-c_1 t} + c_2 e^{-c_2 t} \right)$	$\boxed{\frac{s}{(s+c_1)(s+c_2)}}$	Endwerttheorem	$\lim_{t \to \infty} u(t)$	$\lim_{s \to 0} s \underline{U}(s)$