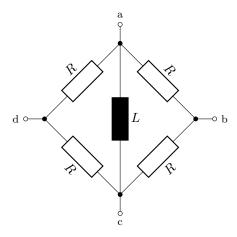
• Aufgabe 1 (6 Punkte)

Gegeben ist nachfolgendes Netzwerk mit dem Widerständen R und der Induktivität L, sowie den Klemmen a, b, c und d.



- a) Bestimmen Sie die Impedanz \underline{Z}_{bd} zwischen den Klemmen b und d.
- b) Bestimmen Sie die Impedanz \underline{Z}_{ac} zwischen den Klemmen a und c.

Im nachfolgenden Aufgabenteil wird die Induktivität L im Netzwerk als Ringspule mit dem Wert

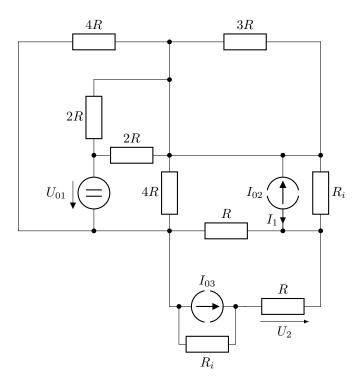
$$L = \mu \frac{w^2 h}{2\pi} \ln \left(\frac{r_2}{r_1}\right)$$

ausgeführt. Die Radien r_1 und r_2 der Ringspule entsprechen obiger Abbildung. Der Widerstand beträgt $R=10\,\Omega$, die Frequenz $f=1\,\mathrm{kHz}$, der Innenradius der Ringspule $r_1=5\,\mathrm{cm}$, der Außenradius $r_2=10\,\mathrm{cm}$ und die Höhe $h=7.18\,\mathrm{cm}$. Die Magnetische Feldkonstante ist $\mu=\mu_0=1,2566\cdot 10^{-6}\,\mathrm{\frac{N}{\Lambda^2}}$.

c) Welche Windungszahl w muss die Spule haben, damit die Impedanz \underline{Z}_{ac} eine Phasenverschiebung von 45° verursacht (Re $\{\underline{Z}_{ac}\} = \text{Im}\{\underline{Z}_{ac}\}$)?

• Aufgabe 2 (10 Punkte)

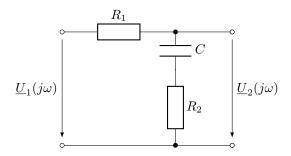
Das nachfolgende Netzwerk mit den Ohmschen Widerständen R, 2R, 3R, 4R und $R_i = R$, der Spannungsquelle U_{01} und den beiden Stromquellen I_{02} und I_{03} ist mit Hilfe des Maschenstromverfahrens zu analysieren.



- a) Wandeln Sie die Stromquellen I_{02} und I_{03} mit den jeweiligen Innenwiderständen R_i in geeignete Spannungsquellen mit den Quellenspannungen U_{02} und U_{03} um. Geben Sie den Wert und die Pfeilrichtung von U_{02} und U_{03} an. Vereinfachen Sie das Netzwerk geeignet und fassen Sie nach Möglichkeit auch Widerstände zusammen.
- b) Skizzieren Sie für das Netzwerk einen zusammenhängenden Graphen und kennzeichnen Sie darin einen vollständigen Baum.
- c) Berechnen Sie mit Hilfe von Aufgabenteil b) die Anzahl der unabhängigen Maschen formelmäßig. Definieren Sie für jede der Maschen einen Maschenstrom $\mathring{I}_1, \mathring{I}_2, \ldots$ mit eindeutiger Pfeilrichtung.
- d) Stellen Sie das Gleichungssystem zur Berechnung der Maschenströme auf.
- e) Geben Sie den Strom I_1 und die Spannung U_2 in Abhängigkeit Ihrer definierten Maschenströme $\mathring{I}_1, \mathring{I}_2, \ldots$ und der gegebenen Größen an.
- f) Bestimmen Sie den Strom I_1 und die Spannung U_2 zahlenmäßig für $U_{01}=24\,\mathrm{V},\,I_{02}=25\,\mathrm{mA},\,I_{03}=50\,\mathrm{mA}$ und $R=1\,\mathrm{k}\Omega.$

 $\bullet \ \ Aufgabe \ 3 \\ (9 \ Punkte)$

Gegeben ist der nachfolgende Vierpol mit der Eingangsspannung $\underline{U}_1(j\omega)$, der Ausgangsspannung $\underline{U}_2(j\omega)$, der Kapazität C, sowie den Ohmschen Widerständen R_1 und R_2 .

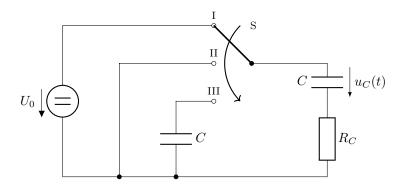


- a) Berechnen Sie den Frequenzgang $\underline{H}(j\omega) = \frac{\underline{U}_2(j\omega)}{\underline{U}_1(j\omega)}$ des Vierpols.
- b) Geben Sie den Betrag $|\underline{H}(j\omega)|$ und die Phase $\varphi(j\omega)$ des Frequenzgangs an.
- c) Berechnen Sie die Werte des Betrags und der Phase für $\omega = 0$ und $\omega \to \infty$.
- d) Skizzieren Sie den Betrags- und Phasengang unter Angabe charakteristischer Werte. Achten Sie dabei auf eine vollständige Achsenbeschriftung.
- e) Welches Übertragungsverhalten hat der Vierpol?
- f) Welchen Frequenzgang $\underline{H}_{\text{rück}}(j\omega) = \frac{\underline{U}_1(j\omega)}{\underline{U}_2(j\omega)}$ hat der Vierpol, wenn er ohne Last rückwärts betrieben wird ($\underline{U}_2(j\omega)$ ist hier die Quellenspannung, $\underline{U}_1(j\omega)$ die Ausgangsspannung)?

• Aufgabe 4 (Achtung: Leichte Aufgabe!)

(9 Punkte)

Gegeben ist ein Netzwerk mit dem Schalter S, den Ohmschen Widerständen R_1 und R_C , den Kapazitäten C und der Gleichspannungsquelle U_0 . Für Zeiten t < 0 ist Schalter S in Stellung I. Die Schaltung befindet sich im eingeschwungenen Zustand.



Zum Zeitpunkt t = 0 wird der Schalter S in Stellung II gebracht:

- a) Bestimmen Sie den Wert der Spannung $u_C(t)$ am Kondensator zu den Zeitpunkten t = 0– und t = 0+ (Anfangsbedingung).
- b) Zeichnen Sie das vollständige LAPLACE-Ersatzschaltbild der Schaltung mit allen relevanten Größen für Zeiten $t \geq 0$ (Schalter S in Stellung II).
- c) Berechnen Sie die LAPLACE-Transformierte $\underline{U}_C(s)$ der Spannung $u_C(t)$ für Zeiten $t \geq 0$ und vereinfachen Sie auf geeignete Weise.
- d) Geben Sie $u_C(t)$ als inverse LAPLACE-Transformierte von $\underline{U}_C(s)$ unter Nutzung der Korrespondenztabelle für die LAPLACE-Transformation an.

Zum Zeitpunkt T beträgt die Spannung $u_C(t=T)=4.415\,\mathrm{V}$ und der Schalter S wird in Stellung III gebracht. Die Quellenspannung $U_0=12\,\mathrm{V}$, die Kapazität $C=10\,\mathrm{\mu F}$, sowie die Widerstände $R_C=600\,\mathrm{k}\Omega$ sind gegeben.

- e) Wann ist der Zeitpunkt T?
- f) Wie verhält sich die Spannung $u_C(t)$ für Zeiten $t \gg T$?

Zeitbereich $(t \ge 0) \circ lacktriangle$ Bildbereich		Eigenschaft	Zeitbereich ⊶ Bildbereich	
$\delta(t)\cdot \sec^{-1}$ (Dirac-Stoß)	1	Transformation	$u(t) = \frac{1}{2\pi i} \int_{c-j\infty}^{c+j\infty} \underline{U}(s)e^{st}ds$	$\underline{U}(s) = \int_{0+}^{\infty} u(t)e^{-st}dt$
1 (Sprung)	$\left \frac{1}{e} \right $	u(t) rein reell	$u(t) = u^*(t)$	$\underline{U}(s) = \underline{U}^*(s^*)$
t^n	n!	Zeit-Verschiebung	$u(t-t_0)$	$\underline{U}(s) \cdot e^{-st_0}$
	$\overline{s^{n+1}}$	Frequenz-Verschiebung	$u(t) \cdot e^{-ct}$	$\underline{U}(s+c)$
e^{-ct}	_1	Zeit- & Frequenz-Skalierung	$u(c \cdot t)$	$\left \frac{1}{ c } \cdot \underline{U}(\frac{s}{c}) \right c \in \mathbb{R}, c > 0$
$\frac{1}{(n-1)!}t^{n-1}e^{-ct}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Differentiation	$\frac{du(t)}{dt}$	$s\underline{U}(s) - u(0+)$
$\frac{1 - e^{-ct}}{1 - e^{-ct}}$	$\frac{(s+c)^n}{c}$	Integration	$\int\limits_{0}^{t} u(au)d au$	$\left \frac{1}{s} \mathfrak{L} \{ u(t) \} + \frac{u(0+)}{s} \right $
1 - 0	s(s+c)	Überlagerung	$c_1 \cdot u_1(t) + c_2 \cdot u_2(t)$	$c_1 \cdot \underline{U}_1(s) + c_2 \cdot \underline{U}_2(s)$
$\frac{1}{c_2 - c_1} (e^{-c_1 t} - e^{-c_2 t})$	$\left \frac{1}{\sqrt{1 + 1 + 2 + 2 + 2 + 2}} \right $	Faltung	u(t) * h(t)	$\underline{U}(s) \cdot \underline{H}(s)$
	$(s+c_1)(s+c_2)$	Anfangswerttheorem	$\lim_{t \to 0+} u(t)$	$\lim_{s \to \infty} s \underline{U}(s)$
$\frac{1}{c_2 - c_1} \left(-c_1 e^{-c_1 t} + c_2 e^{-c_2 t} \right)$	$\boxed{\frac{s}{(s+c_1)(s+c_2)}}$	Endwerttheorem	$\lim_{t \to \infty} u(t)$	$\lim_{s \to 0} s \underline{U}(s)$